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Tensors Models Embedding

A Theory Digestif

I Formal languages define necessary and sufficient conditions
on (phonological) well-formedness

I it’s not modeling!
I Regular class (bounded memory): sufficient, unnecessary

I Problem: Translate subregularity to distributed computation

Geometric characterization (vector spaces) of subregular languages
(Rawski 2019 IJCAI)

I Relational Structures as tensors

I Locally Threshold Testable & Star-Free constraints as
multilinear maps via first-order formulas
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Tensors Models Embedding

Tensors: Quick and Dirty Overview
I Order 1 — vector:

~v ∈ A = ∑
i

Cv
i
−→ai

I Order 2 — matrix:

M ∈ A⊗B = ∑
ij

CM
ij
−→ai ⊗

−→
bj

I Order 3 — Cuboid:

R ∈ A⊗B⊗C = ∑
ijk

CR
ijk
−→ai ⊗

−→
bj ⊗−→ck
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Tensors Models Embedding

Tensors: Quick and Dirty Overview

Tensor contractions:

I Order 1 × order 1: inner product (dot product)

I Order 2 × order 1: matrix-vector multiplication

I Order 2 × order 2: matrix multiplication

Tensor contraction is nothing fancier than a generalization of these
operations to any order.

I Order n × order m: sum through shared indices.

Order n × order m contraction yields tensor of order n+m−2.
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Tensors Models Embedding

Tensor Product Representations (Smolensky 1990)

pics: Smolensky & Legendre 2006
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Tensors Models Embedding

Tensor Product Representations (Smolensky 1990)

I Smolensky (and many others): grammar optimization
(OT/HG) over tensors

I Hale and Smolensky: Strictly 2-Local HG for recursive tree
tensors.

I beim Graben and Gerth: EEG dynamics and minimalist
parsing with tree tensors
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Tensors Models Embedding

Relational Structures

Domain + Labeling Relation(s) + Ordering Relation(s)
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Relational Structures

1

a

2

b

3

b

4

a
/ / /

8
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Relational Structures
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Tensors Models Embedding

Relational Structures
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Tensors Models Embedding

Relational Structures
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Tensors Models Embedding

Subregular Hierarchy

pic: Heinz 2018
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Tensors Models Embedding

Tensors as Functions

Tensor-multilinear map isomorphism (Bourbaki, 1989; Lee, 1997)

For any multilinear map f : V1→ . . .→ Vn there is a tensor
T f ∈ Vn⊗ . . .⊗V1 such that for any −→v1 ∈ V1, . . . ,~vn−1 ∈ Vn−1, the
following equality holds

f (−→v1 , . . . ,
−−→vn−1) = T f ×−→v1 × . . .×−−→vn−1

Tensors therefore act as functions, with tensor contraction as
function application.
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Tensors Models Embedding

Embedding Structures: Domain

Domain elements D as the set of basis vectors in D ∼= R|D|.
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Tensors Models Embedding

Embedding Structures: Relations

k-ary relation r computed by an order-k tensor R
truth value Jr(di1 , . . . ,dik)K =R(di1 , . . . ,dik) =R×di1×·· ·×dik
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Tensors Models Embedding

Logical Connectives (Sato 2017)

J¬FK′ = 1− JFK′

JF1∧·· ·∧FhK′ = JF1K′ · · ·JFhK′

JF1∨·· ·∨FhK′ = min
1
(JF1K′+ . . .+ JFhK′)

J∃yFK′ = min
1
(

N

∑
i=1

JFy←diK
′)

J∀yFK′ = J¬∃y¬FK = 1−min
1
(

N

∑
i=1

1− JFy←diK
′)

min1(x) = min(x,1) = x if x < 1, otherwise 1,
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Tensors Models Embedding

Easy Example: Words must contain a b

Fone-b = ∃x(Rb(x)) Tone-B = min
1

( N

∑
i=1
Rb(di)

)
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+

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1
(2) = 1
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Tensors Models Embedding

Distributed Computation and Subregularity

I vanilla optimization & mods don’t play well with subregularity
I Hao 2019: Serial optimization generates non-regular relations
I Koser & Jardine 2019: SL constraints not closed under

optimization

I ML theory: optimization insufficient/wrong language for
neural nets (all constraint interaction is a special case)

I Zhang et al 2017: explicit regularizers, early stopping, gradient
noising tricks (batch sizes/learning rates) cant prevent
algorithms from attaining low training objective even on data
with random labels

I Arora ICM/ICML plenary: optimization “may imply nothing
about generalization, obscures important properties of
architecture”.

19



Tensors Models Embedding

Distributed Computation and Subregularity

I vanilla optimization & mods don’t play well with subregularity
I Hao 2019: Serial optimization generates non-regular relations
I Koser & Jardine 2019: SL constraints not closed under

optimization

I ML theory: optimization insufficient/wrong language for
neural nets (all constraint interaction is a special case)

I Zhang et al 2017: explicit regularizers, early stopping, gradient
noising tricks (batch sizes/learning rates) cant prevent
algorithms from attaining low training objective even on data
with random labels

I Arora ICM/ICML plenary: optimization “may imply nothing
about generalization, obscures important properties of
architecture”.

20



Tensors Models Embedding

Going Under the Hood

I Tensor decomposition is flexible and powerful
I Kolda/Bader 2009 review

I fast algebraic operations to use for subregularity
I projection, PCA, SVD, etc

I Sato 2018: abducing relations & transitive closure in O(n3)

I Many extensions
I transductions as multilinear maps between tensor orders
I MSO extension (set variables) via powerset (basis “slices”)

I Great way to make friends with physicists
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