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Introduction



UR and Phonological grammar learning

- Learning problem: the simultaneous inference of underlying
representations (URs) and a phonological grammar from
alternating surface representations (SRs)

(Merchant, 2008; Tesar, 2014; Cotterell et al,, 2015)

- Our proposal: a solution based on the structure provided by the

input strictly local (ISL) functions
(Chandlee and Heinz, 2018; Jardine et al., 2014)



English plural

The plural morpheme in English
has at least two pronunciations:
[s] and [z]. CAT-PL [
CUFF-PL [kafs]
DEATH-PL [debs]
GIRL-PL [g3:rlz]
[
[

Morphemes SR

kaets]

CHAIR-PL fJearz]
BOY-PL bo1z]




English plural

The plural morpheme in English

0 Morphemes SR
has at least two pronunciations:

[s] and [z]. CAT-PL [keets]
CUFF-PL [kafs]
Analysis: DEATH-PL [deBs]
- A map from morphemes to GIRL-PL [g3:rlz]
URs CHAIR-PL [Tearz]
CAT— [ kaet/ BOY-PL [bo17]
PL—/z/
etc.

- A'map from URs to SRs
/z] — [s] /[-SONORANT] __



Formalizing the problem

- M: set of morphemes
- ¥: alphabet of symbols in SR and UR (segmental inventory)
- Targets:

- lexicon function £: M* — X~
- phonology function ¢ : ¥* — &*



Formalizing the problem

- M: set of morphemes

- ¥: alphabet of symbols in SR and UR (segmental inventory)
- Targets:

- lexicon function £: M* — X~
- phonology function ¢ : ¥* — &*

- Learning data is generated by ¢ o £; i.e., a finite set D such that
v(m,s) € D, p(¢(m))=s

- Note: ¢ is an ISL; function from morphemes to URs

- ISL functions only make changes in the output with respect to
the local information in the input.



Target transducers and learning data

r:ftat/ s /tal
r;: [tad/ s,:/da/
ry:/al  s3:/dal

m 5
1151 [tatta]
ns; [tatda]
1S3 [tata]
I2S [tadda]
S, [tadda]
753 [tada]
I35 [ata]
r3s; [ada]

r3S3 [aa]
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Target transducers and learning data

r:ftat/  sp: /tal
r;: /tad/ s,:/da/
ry:/al  s3:/dal

m s
1151 [tatta]
1s; [tatda]

1S3 [tata]

[ I2S [tadda] }
tt aa e [tadda]
753 [tada]
: sa r3sq [ata]
r3s; [ada]
)
d:d

r3S3 [aa]




The learner knows a priori:

- A lexicon of morphemes/lexical meanings (M), in which each
morpheme has only one UR (¢ is ISLy).

- The ISL, structure of phonology function. Here, we focus on ISL,



Proposed Learner



- Initial hypothesis
- Learning procedure



Initial hypothesis

- Initial hypothesis for £: prefix tree transducer T,, obtained from
SR segmentation based on longest common prefix (LCP)
(Oncina et al,, 1993; Jardine et al., 2014)



Single Process Example: Initial lexicon transducer

m S

IS [tatta]

rs; [tatda] | — LCP of SR is tat
1S3 [tata]

IS [tadda]

S, [taddal

S3 [tada]

r3Sq [ata]

I3s; [ada]

I3S3 [aal




Single Process Example: Initial lexicon transducer

m S
1S [tatta]
rns; [tatda]
1153 [tata]
254 [tadda]
7S, [tadda]
I2S3 [tada]
I35 lata]
r3S; [ada]
r3s; [aal

LCP of SR is tad



Single Process Example: Initial lexicon transducer

m S
1S [tatta]
rns; [tatda]
153 [tata]
254 [tadda]
7S, [tadda]
I2S3 [tada]
I35 [ata]
) [ada]
I3S3 [aal

T ICPofSRis a



Single Process Example: Initial lexicon transducer

m 5

[ i [tatta] ] y

1S [tatdal

1S3 [tata]

r2Sq [tadda] -

[ENY) [tadda]

rS3 [tada]

r3Sq [ata]

r3S; [ada]

rS3 [aa]




Single Process Example: Initial lexicon transducer

m 5

s [tatta] y
[ 1S [tatdal

1S3 [tata]

r2Sq [tadda] -

[ENY) [tadda]

rS3 [tada]

r3Sq [ata]

r3S; [ada]

rS3 [aa]




Single Process Example: Initial lexicon transducer

@O

m 5
i [tatta] y
1Sy [tatdal
[ 1153 [tata]
IS4 [tadda] -
[ENY) [tadda]
rS3 [tada]
r3Sq [ata]
r3S; [ada]

I5S3 [aa]




Single Process Example: Initial lexicon transducer

S

151 [tatta]
1S [tatdal
1S3 [tata]
r2Sq [tadda]
[ENY) [tadda]
rS3 [tada]
r3Sq [ata]
S, [ada]

353 [aa]




Single Process Example: Initial lexicon transducer

S

151 [tatta]
1S [tatdal
1S3 [tata]
r2Sq [tadda]
[ENY) [tadda]
rS3 [tada]
r3Sq [ata]
r3S; [ada]
rS3 [aa]




Initial hypothesis

- Initial hypothesis for ¢: prefix tree transducer T,, obtained from
SR segmentation based on longest common prefix
(Oncina et al,, 1993; Jardine et al., 2014)

- Initial hypothesis for ¢: ISL, transducer T,, for identity function



Single Process Example: phonology transducer

Identity function:
[tadt/—[tadt]
[tatt/ —[tatt]

1



Learning Procedure

- Modify lexicon transducer T, until one UR per morpheme

- For each change in lexicon transducer T,, make opposite change
in phonology transducer T,



Inconsistency detection

The learner detects the
inconsistency on lexicon
transducer T,

r: [tat/ =48

sy /da
ry: [tad/

s,: /da/
r S,



Inconsistency detection

The learner detects the
inconsistency on lexicon
transducer T,




Environment Collection

Find environment for different SRs based on the phonology
transducer.

environment s

14



Environment Collection

Find environment for different SRs based on the phonology
transducer.

environment s
[ENY Tt t

14



Environment Collection

Find environment for different SRs based on the phonology
transducer.

environment s
[ENY Tt t
3$q a t

14



Environment Collection

Find environment for different SRs based on the phonology

transducer.

environment s

[ENY Tt t
3$q a t
S d d

14



Modifying Transducers

Change SR into UR in the prefix-tree transducer.
Make an opposite change in the phonology transducer.

sy [ta @

n: /tat/ s;: [da/
I s




Modifying Transducers

Change SR into UR in the prefix-tree transducer.
Make an opposite change in the phonology transducer.

sy [ta @
r3: fal " s;: /da/ o




Modifying Transducers

Change SR into UR in the prefix-tree transducer.
Make an opposite change in the phonology transducer.

sy /da @

ry: [tad/ s /da/
I 757




Modifying Transducers

Change SR into UR in the prefix-tree transducer.
Make an opposite change in the phonology transducer.

)
si: /da

ry: [tad/ s /da/
I 757




Primary Result

- The learner can learn assimilation, dissimilation, deletion,
epenthesis and metathesis.

- So far it learns only one phonology process from a data set.

- In particular, it is able to learn opacity, i.e. self-counter-feeding
and self-counter-bleeding.

16



Future Research

- Learn multiple phonology processes simultaneously from one
data set.

- Learn all ISL, functions.
- Learn all ISL, functions for any given k.

- Learn Output-Strictly-Local (OSL) phonology transformations.
(Chandlee et al,, 2015).



Discussion




Three questions

- Why we design an ISL learner, i.e. why not OSL learner or Output
Tier Based Strictly Local (OTSL) learner?
(Chandlee et al,, 2015; Burness and McMullin, 2019)

- How abstract is the learnt UR? Specifically, is it able to learn
abstract URs?
(Kiparsky, 1968; Kenstowicz and Kisseberth, 2014)

- What differentiate subregular learners from other learners?



Why ISL phonology?

- Empirically significant: 94% of phonology patterns in P-Base

database are ISL.
(Mielke, 2004; Chandlee and Heinz, 2018).

- Learning based on the structure of ISL class can be extended to
OSL and OTSL functions, which both share a particular structure

19



Can we learn abstract URs?

- It depends.

20



Can we learn abstract URs?

- It depends.

- Two cases: whether the abstract UR exerts phonological
influence on the target phonology function.

20



Subregular learner vs. Other learners

- Current learner: specific to learning phonology.
(Gallistel and King, 2011; Heinz, 2010).
- Cue-based parameter setting model and Learners based on
Optimality Theory: non-specific to learning phonology
(Dresher and Kaye, 1990; Dresher, 1999; Jarosz, 2006; Apoussidou, 2007; Merchant,
2008; Merchant and Tesar, 2008).

21



Subregular learner vs. Other learners

- Current learner: specific to learning phonology.
(Gallistel and King, 2011; Heinz, 2010).

- Cue-based parameter setting model and Learners based on
Optimality Theory: non-specific to learning phonology
(Dresher and Kaye, 1990; Dresher, 1999; Jarosz, 2006; Apoussidou, 2007; Merchant,
2008; Merchant and Tesar, 2008).

- Modular learning: an ISL learner is an independent module in
learning the whole phonology. By composing different modules,
the knowledge of the whole is acquired.

Heinz (2010, 2011).
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Conclusion




- Subregular classes of functions provide structure for the
simultaneous induction of URs and the phonological grammar
- The general procedure here can be extended to learning

iterative (output-based) processes, long-distance processes, and
process interactions
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Backup slides



Regressive Assimilation

/t/ becomes voiced [d] before /d/.

é/@
m S

(msq [tatta]] r: ftal
1S, [tadda]

153 [tata]

254 [tadta] _

S, [tadda]

r>S3 [tata]

r3s; [ata]

r3S, [ada]

r3S3 [aa]

24
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Regressive Assimilation

/t/ becomes voiced [d] before /d/.
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Regressive Assimilation

/t/ becomes voiced [d] before /d/.

m 5

75 [tatta] r: Jtal ol @
1S, [tadda]

1S3 [tata] 55 7

s [tadta] - 7 (e Sai /da/ e
S, [tadda] K

S [tata] syt /a @
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Regressive Assimilation

/t/ becomes voiced [d] before /d/.
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Modifying Transducers

Change SR into UR in the prefix-tree transducer.
Make an opposite change in the phonology transducer.

s [tta @
ry: [ta/ . Sa: /dda/@
2 292

25



Modifying Transducers

Change SR into UR in the prefix-tree transducer.
Make an opposite change in the phonology transducer.

sq: [tta @
ry: [tat/ S\ /dda/ e
2 292
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Modifying Transducers

Change SR into UR in the prefix-tree transducer.
Make an opposite change in the phonology transducer.

Sq: [tta T @
rs ] G /dda/@
2 292
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Modifying Transducers

Change SR into UR in the prefix-tree transducer.
Make an opposite change in the phonology transducer.

sy [t 'tta @

ry: [tat/ »:/t 'tda/
rn [FEY)
Sg:%\@
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Modifying Transducers

Change SR into UR in the prefix-tree transducer.
Make an opposite change in the phonology transducer.

sy /ta @
ry: [tat/ f s, /da/ e
2 292

25



- counter-feeding

- counter-bleeding
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Counter-feeding

/t/ becomes a voiced [d] after /d/.

sy: [ta @

m s @
IS [tatta] @
1S, [tatda] r: Jtat/ @
1S3 [tata]
51 [tadda] @
ISy [tadda] @
ryS3 [tada] -
r3S [ata] @
r3S; [ada] @
1353 [aa] r,: Jtadd/ @
rySq [taddta]
r4S; [taddda] @
r4S3 [tadda] g
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Modified Transducer

tt

t
si: /da
ry: ftad/ s;: /da/
r [FRY)

01020
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What about the environment?

environment sy

29



What about the environment?

environment sy
r1Sq t t
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What about the environment?

environment sy
r1Sq t t
3$q a t
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What about the environment?

environment sy
Sy t t
354 a t
451 d t

29



What about the environment?

environment sy

1S t t
I35 a t
451 d t
754 d d
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What should we do about the clash of the environment?

Sy [ta @
ry: [tadd/ Sy /da/ 5
\53/%\@

30



What should we do about the clash of the environment?

Sy [ta

ry: [tadt/ Sy /da/

\s:%\@
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What should we do about the clash of the environment?

environment sy

1S t t
I35 a t
451 t t
754 d d
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