What I learned in France last year 2024.09.28 | J. Heinz

Learning String Transductions by Solving Equations
(joint work with Rémi Eyraud and Dakotah Lambert)

The basic problem. You are given a deterministic finite-state transducer (DFT), whose
states and transitions are known to you, except for the outputs on the transitions, which are
hidden from you. You are also given a finitely many pairs of strings: an input string and
the output string that the transducer produces with this input. With this information, what
can you deduce about the outputs that are hidden from you? What information would you
need to correctly identify the hidden outputs?

Example. You know that there is a lawful relationship between the input/output pairs of
strings below that can be expressed by the DFT in diagram below.

a:Ty

(ba, cbcac) (abba, aabbcbbcac)
(baba, cbcbbbeac) (aba, aabbbcac)

Motivation 1. Many phonological processes belong to classes of string-to-string functions
that can be described with a single deterministic transducer. For example, there is a single
transducer for k-ISL functions [1]. Learning these processes from (UR,SR) pairs can then be
construed as a form of this problem.

Motivation 2. Algorithms for learning DFTs currently do not necessarily make use of
all the information in a sample to identify the hidden output transitions. In some cases
(SOSFTA [2]), the sufficient sample is very particular, and the algorithm ignores data points
not in this sample. In other cases (ISLFLA [3]), OSTIA [4]), a DFT is returned for any
sample, but it is unknown how to measure the “goodness” of this DFT compared to the
target one in the absence of a sufficient sample.

Proposed Solution. Solve a system of equations provided by the data. Each input string
corresponds to a single path, which is a sequence of transitions. For example, the four data
points above yield the following equational system.

ToToT7Lg = cbcac (1)
ToTaX7XsX7xg = cbcbbbeac (2)
ToT1TsTsTrTe = aabbcbbcac (3)

ToT1T5T7T6 = aabbbcac (4)

What I learned in France last year 2024.09.28 | J. Heinz

How to solve. We don’t have anything clever to say here. A brute force calculation of
all the possibilities is possible because of the finiteness of the system. One advantage of this
approach is that it can be applied incrementally, and at every moment, one can say exactly
what is known and what is unknown about any particular transition.

Complexity. A brute force consideration of all the possibilities grows very fast! I won'’t
provide the exact calculation here, but it suffices to notice that for a single equation with the
number of solutions grows like “n choose k,” which is equal to #Lk)' Furthermore, if there
are two equations for non-overlapping input paths, then the number of solutions is product
of the numbers of solutions of each equation!

On the other hand, if input paths overlap, then the correct values must be common to
both paths, which restricts the viable solutions. This fact can be leveraged to process inputs
in a way that attempts to order the inputs in a way to take advantage of overlapping paths
in order to keep the number of hypotheses entertained at any given point small. We can also
limit the possible solutions by only considering ones that are onward, which ensures that
there is a unique way to assign outputs to the DFT for any target function.

Conjecture. Dakotah conjectured that the equational method will always yield the correct
solution provided the sample includes, for each pair of successive transitions (z, y) in the given
DFT, an (input, output) data point yielding an equation including zy on its left hand side.

If it were true. The sample Dakotah conjectures is much more flexible than the sufficient
samples of SOSFIA and ISFLA in the sense that many different data sets could count as
sufficient. It would also be the case that the same set of input strings would be sufficient for
learning every function in the class! There are also some excellent learning results we can
also obtain if it assumed that the DFT generates the data stochastically.

Status. Anton gave a counterexample! It’s not true! So we are looking for a new conjec-
ture. Anton’s counterexample helps here.

References

[1] Jane Chandlee and Jeffrey Heinz. Strict locality and phonological maps. Linguistic Inquiry,
49(1):23-60, Jan 2018.

[2] Adam Jardine, Jane Chandlee, Rémi Eyraud, and Jeffrey Heinz. Very efficient learning of
structured classes of subsequential functions from positive data. In Alexander Clark, Makoto
Kanazawa, and Ryo Yoshinaka, editors, Proceedings of the Twelfth International Conference on
Grammatical Inference (ICGI 2014), volume 34, pages 94-108. JMLR: Workshop and Confer-
ence Proceedings, September 2014.

[3] Jane Chandlee, Rémi Eyraud, and Jeffrey Heinz. Learning strictly local subsequential functions.
Transactions of the Association for Computational Linguistics, 2:491-503, November 2014.

[4] José Oncina, Pedro Garcia, and Enrique Vidal. Learning subsequential transducers for pat-
tern recognition tasks. IEEFE Transactions on Pattern Analysis and Machine Intelligence,
15:448-458, May 1993.

