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Learning ISL functions with features
Magdalena Markowska

1 Motivation

Various small, interpretable models have been proposed for learning morpho-phonological processes represented
as deterministic finite-state transducers (DFTs). Those include: the Onward Subsequential Transducer Inference
Algorithm (OSTIA, Oncina et al. (1993)) which employs the technique of state-merging to learn the function; the
Input Strictly Local Functions Learning Algorithm (ISLFLA, Chandlee et al. (2014)) which learns particularly k-ISL
functions; the Structured Onward Subsequential Function Inference Algorithm (SOSFIA, Jardine et al. (2014)) which
calculates the minimal change that needs to be made when transitioning from one state to another.

All of these algorithms operate over segments and require a relatively large and often very particular sample to
successfully infer the function. We show that by changing the representation of data from segments to collections
of ordered features, we can successfully reduce the size of a characteristic sample. As a result, we introduce an
algorithm built on SOSFIA that breaks down the learning problem into smaller parts by simultaneously inferring
the target function for each feature ϕ ∈ F separately. Such decomposition results in substantially smaller DFTs,
which consequently need less data. This approach is particularly appealing for low-resource languages for which the
available data is very much limited.

2 Factoring by features

Here we assume a contrastive set of features, where each feature ϕ ∈ F is assigned any value from the set {+,−, 0}.

a a: m t
cons - - + +
nasal - - + -
long - + 0 0
cor 0 0 - +

Table 1: Feature chart for Σ = {a, a :,m, t} and F = {cons, nasal, long, cor}.

A feature ϕ ∈ F is then a function from Σ to the set {+,−, 0}, which can be lifted to a homomorphism from Σ∗

to {+,−, 0}∗. Eg.

ϕcor(mat) = −0+

ϕnasal(mat) = +−−

If Φ is an ordered set of features, then Φ is a pointwise product of its homomorphisms. Eg.

Φ[cor,nasal](mat) = [−+][0−][+−]

Given a sample S of input-output pairs, let ⟨ΦX ,ΦY ⟩(S) = {(ΦX(x),ΦY (y)) : (x, y) ∈ S}.

The target function f : Σ∗ → ∆∗ is decomposed into n-many functions, one for each ϕ ∈ F . For the moment
we focus on k-ISL functions (Chandlee, 2014). Each feature ϕ is individually represented with a k-ISL DFT, τ(Φ,ϕ),
where ϕ is the feature for which the outputs will be predicted, and Φ is a combination of features used to predict ϕ.

2.1 Example

Let us consider a 2-ISL function that represents a vowel vowel nasalization process in English:

• [-cons] −→ [+nasal] / [+cons, +nasal]

Given the previously defined Σ, a 2-ISL DFT looks as follows. The A state represents both a and a :, but the
full machine would have those states separated. Boundary states (⋉,⋊) are not shown.
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Now we project every feature individually. Below are shown 2-ISL τ([cons],cons), on the left, and 2-ISL τ([nasal,cons],nasal),
on the right.
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3 How does the new algorithm operate?

SOSFIA FxF iterates through every feature ϕ ∈ F and searches for the right featural combination (if needed) to deter-
mine the outputs for that feature. It is done by first extracting the featural sample ⟨ΦX ,ΦY ⟩(S) = {(ΦX(x),ΦY (y)) :
(x, y) ∈ S} and checking if it is functional. It it is, a k−ISL DFT is projected from the ‘original’ segmental machine.
If it is not, the algorithm considers 2 features on the input, exctracts a new sample and checks if it’s functional. And
so on.

Data: An output empty DFT τ□ = (Q,Σ,∆ = {□}, q0, qf , δ), a sample S ⊂ ⋊Σ∗ ⋉×∆∗, a feature set F
Result: G containing n many DFT(Φ,ϕ)s, one for each ϕ ∈ F
G ← ∅
for ϕ in F do

τ(Φ,ϕ) ← FeatSearch(τ□, S, F, ϕ, [{ϕ}]);
G ← G ∪{τ(Φ,ϕ)};

end
return G

Algorithm 1: SOSFIA Factor by Feature (SOSFIA FxF)

Definition 1. Given a function f , a data sample S, projection functions Φx and Φy, is functional iff:

(u, v), (u′, v′) /∈ S, where Φx(u) = Φx(u
′) and Φy(v) ̸= Φy(v

′)
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Definition 2. The feat combo(ϕ,Φ,F) of a feature ϕ is a list of combinations of length |Φ| + 1 of all features in F
with ϕ with no repetitions allowed:

feat combo(ϕ,Φ, F ) = {{ϕ} ∪ Φ |Φ ⊆ F \ {ϕ}}

Data: An output empty DFT τ□ = (Q,Σ,∆ = {□}, q0, qf , δ), a sample S ⊂ ⋊Σ∗ ⋉×∆∗, a feature set F , a
feature ϕ, a list of sets of features FeatLIST ⊆ F

Result: a DFT τ(Φ,ϕ)

while FeatLIST is not empty do
Φ← dequeue(FeatLIST);
Sϕ ← factor S(S, ϕ,Φ);
if check if functional(Sϕ) then

return SOSFIA(factor DFT(τ□, ϕ,Φ), Sϕ);
end

end
NewFeatLIST ← feat combo(ϕ,Φ, F );
FeatSearch(τ□, S, F, ϕ, NewFeatLIST);

Algorithm 2: FeatSearch

4 Case studies

In the particular case of the k-ISL functions inference, the minimum size of the longest string in a sufficient sample
equals 2k− 1. The properties of k-ISL DFTs and the way SOSFIA operates give us an intuition to why that is. The
depth of a k-ISL DFT is k − 1 long. In other words, while in one of the furthest states from ⋊, excluding ⋉, the
machine has been passed a string of minimal length equal to k − 1. However, from the definition of k-ISL functions
the shortest substring that needs to be considered at a time is k-long. It is then necessary to allow for a possibility
of the k-long substring to be passed through a DFT from every state q ∈ Q. Hence, the sum of the depth of a k-ISL
DFT (k-1) and the memory window (k) is equal to 2k − 1.

In order to find a smallest characteristic sample, we also employ another algorithm that recursively chooses 10
random input-output pairs from the CS until it SOSFIA FxF successfully find the sufficient one.

4.1 Sample types

• an original sample (S): input-output pairs generated by the original DFT, where each segment is represented
with values for all features.

• a minimal segments sample (M): a minimal sample randomly drawn from S with AMBA calling the original
SOSFIA algorithm.

• a feature sample (S(Φ,ϕ)): a sample extracted from S for each feature ϕ ∈ F . For example, S([high],high) is a
sample extracted from S to predict [high] from [high], while S([high, round],high) means that two features [high]
and [round] are projected to predict [high].

• a minimal all features sample (MF ): a minimal sample randomly drawn from S with AMBA calling SOSFIA
FxF.

• a minimal feature sample (M(Φ,ϕ)): a minimal sample drawn from M(Φ,ϕ) for each feature ϕ ∈ F . For example,
M([high],high) is a sample extracted from M(Φ,ϕ) to predict [high] from [high], while M([high, round],high) means
that two features [high] and [round] are projected to predict [high].

• max(M(Φ,ϕ)) is the maximum cardinality of all M(Φ,ϕ)s for all ϕ ∈ F .

• the union of the M(Φ,ϕ) samples (Uϕ):
⋃

ϕ∈F M(Φ,ϕ). In case |Uϕ| ≥ |MF |, we set Uϕ equal to M(Φ,ϕ).

4.2 English vowel nasalization

Given the alphabet of English phonemes of length |Σ| = 26, a characteristic sample of strings of length up to 3 was
generated ( |S| = 18, 278).
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Feature set Φ |S(Φ,ϕ)| Avg. |M(Φ,ϕ)| SD

[nasal, cons] 84 83 1.14
[nasal, long] 84 83 1.14
[nasal, approx] 258 243 5.56
[nasal, lab] 258 243 9.90
[nasal, labdent] 155 152 2.83
[nasal, cor] 258 248 5.07
[nasal, lat] 258 232 5.12
[nasal, dor] 258 240 4.26
[delrel] 39 38 0.67
[voice] 14 14 0.42

Table 2: :
The size of S(Φ,ϕ), derived by SOSFIA FxF, averaged M(Φ,ϕ) samples, derived by AMBA, when run on SOSFIA
FxF, and standard deviation (SD) for selected sufficient and insufficient features in inferring the English VN

function.

segments features

|S| |M | max(M(Φ,ϕ)) Avg. |MF | |Uϕ|
18,278 7,430 83 4,142 904

Table 3: Summary of five sample sizes for the segmental and all featural machines combined in inferring the
English NV function.

4.3 Yawelmani vowel shortenning

• [-cons, +long] −→ [-long] / [+cons][+cons]

Because this process requires 3-ISL function, we had to use much smaller alphabet to generate the sample of
approximate size to the previous case study. Here, |Σ| = 7 and |S| = 19, 607

Feature set Φ |S(Φ,ϕ)| Avg. |M(Φ,ϕ)| SD

[long] 363 360 2.63
[cons] 62 62 0.53
[nasal] 62 58 3.38
[ant] 363 316 29.99

Table 4: :
The size of S(Φ,ϕ), derived by SOSFIA FxF, averaged M(Φ,ϕ) samples, derived by AMBA when run on SOSFIA FxF,
and standard deviation (SD) for selected sufficient and insufficient features in inferring the Yawelmani VS function.

segments features

|S| |M | max(M(Φ,ϕ)) Avg. |MF | |Uϕ|
19,607 19,170 360 9,158 4,075

Table 5: Summary of five sample sizes for the segmental and all featural machines combined in inferring the
Yawelmani VS function.
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4.4 Final epenthesis in Chukchi

• ø−→ @ / [+cons] [+cons]⋉

Feature set Φ |S(Φ,ϕ)| Avg. |M(Φ,ϕ)| SD

[round, high] 1,364 1,347 12.05
[round, back] 363 363 0.58
[strid, low] 1,364 1,361 3.83
[strid, front] 3,905 3,886 8.54
[approx] 62 62 0
[lab] 363 363 0

Table 6: :
The size of S(Φ,ϕ), derived by SOSFIA FxF, averaged M(Φ,ϕ) samples, derived by AMBA when run on SOSFIA FxF,
and standard deviation (SD) for selected sufficient and insufficient features in inferring the Chukchi FE function.

segments features

|S| |M | max(M(Φ,ϕ)) Avg. |MF | |Uϕ|
19,607 19,260 3,886 18,786 18,786

Table 7: Summary of five sample sizes for the segmental and all featural machines combined in inferring the
Chukchi FE function.

4.5 Polish o-raising and final devoicing

• [-sonorant] −→ [-voice] / ⋉

• [-cons, +back, -low] −→ [+high] / [+cons, +voice, -nasal]⋉
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|Σ| segments features

|S| max(M(Φ,ϕ)) |MF | |Uϕ|
7 19,607 9,308 19,500 19,500
8 37,448 9,295 36,350 36,350
9 66,429 19,522 64,900 64,900
10 111,110 19,497 103,100 103,100

Table 8: Summary of four sample sizes for the segmental and all featural machines combined in inferring the
composition of FD and OR functions in Polish with the incremental increase of the alphabet.

5 Identity as a default

In another set of experiments, we changed the output-empty DFT, an argument to SOSFIA and SOSFIA FxF, to
identity one with the assumption that it will require a smaller sample to make right predictions. The assumption
significantly affected only the size of the averaged sizes of the MF for the English and Yawelmani cases. In the
former, Avg MF was reduced approximately by half (from 4143 to 1838). In the latter the size was reduced from
9158 to 7696. In the more complex cases, no significant differences were observed.

6 Future work

• Instead of pre-determining k value, we could start with k = 1 by default, and increase it only when necessary.
The assumption here is that there will be features that will never change their values and could be represented
with one state DFT.

• The feature search process is still pretty expensive. Two ideas on how to address the issue:

– consider only constrastive features

– organize features s.t. the combinations are ‘easier’ to find
Perhaps both can be resolved by implementing Dresher’s Successive Division Algorithm (Dresher, 2009)

• Here we presented the feature factoring approach on SOSFIA FxF, but this algorithm can be replaced with
other ones.

• learning lexicon: Chandlee and Jardine (prep)
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