
Generalizing BUFIA: Learning Positive and
Negative Grammars from Unconventional String

Models

Sarah Brogden Payne
sarah.payne@stonybrook.edu

paynesa.github.io

Rutgers Subregular Phonology Workshop
September 29, 2024

Rutgers Subregular Workshop Learning Positive Grammars with BUFIA Payne (Stony Brook) 1

https://paynesa.github.io/

Overview

• Previous work: learning formal languages with symbolic
representations (Heinz, 2010b; Heinz et al., 2012, i.a.)

• Grammars as collections of forbidden or allowed combinations

1 2

s S

<

Rutgers Subregular Workshop Learning Positive Grammars with BUFIA Payne (Stony Brook) 2

Overview

• Previous work: learning formal languages with symbolic
representations (Heinz, 2010b; Heinz et al., 2012, i.a.)

• Grammars as collections of forbidden or allowed combinations

1 2

s S

<

Rutgers Subregular Workshop Learning Positive Grammars with BUFIA Payne (Stony Brook) 2

Overview

• Previous work: learning formal languages with symbolic
representations (Heinz, 2010b; Heinz et al., 2012, i.a.)

• Grammars as collections of forbidden or allowed combinations
• Conversion between negative & positive grammars is straightforward

• Chandlee et al. (2019): learn with feature-based representations

• Grammars as collections of forbidden combinations

1 2

+Str
+Ant
-Voi

+Str
-Ant
-Voi

<

Rutgers Subregular Workshop Learning Positive Grammars with BUFIA Payne (Stony Brook) 3

Overview

• Previous work: learning formal languages with symbolic
representations (Heinz, 2010b; Heinz et al., 2012, i.a.)

• Grammars as collections of forbidden or allowed combinations
• Conversion between negative & positive grammars is straightforward

• Chandlee et al. (2019): learn with feature-based representations

• Grammars as collections of forbidden combinations

1 2

+Str
+Ant
-Voi

+Str
-Ant
-Voi

<

Rutgers Subregular Workshop Learning Positive Grammars with BUFIA Payne (Stony Brook) 3

Overview

• Previous work: learning formal languages with symbolic
representations (Heinz, 2010b; Heinz et al., 2012, i.a.)

• Grammars as collections of forbidden or allowed combinations
• Conversion between negative & positive grammars is straightforward

• Chandlee et al. (2019): learn with feature-based representations
• Grammars as collections of forbidden combinations

1 2

+Str
+Ant
-Voi

+Str
-Ant
-Voi

<

Rutgers Subregular Workshop Learning Positive Grammars with BUFIA Payne (Stony Brook) 3

Overview

• Previous work: learning formal languages with symbolic
representations (Heinz, 2010b; Heinz et al., 2012, i.a.)

• Grammars as collections of forbidden or allowed combinations
• Conversion between negative & positive grammars is straightforward

• Chandlee et al. (2019): learn with feature-based representations
• Grammars as collections of forbidden combinations
• What about collections of allowed combinations?

• This talk: extension of BUFIA to learn grammars as collections of
allowed or forbidden feature-based combinations in a unified way

Rutgers Subregular Workshop Learning Positive Grammars with BUFIA Payne (Stony Brook) 4

Overview

• Previous work: learning formal languages with symbolic
representations (Heinz, 2010b; Heinz et al., 2012, i.a.)

• Grammars as collections of forbidden or allowed combinations
• Conversion between negative & positive grammars is straightforward

• Chandlee et al. (2019): learn with feature-based representations
• Grammars as collections of forbidden combinations
• What about collections of allowed combinations?

• This talk: extension of BUFIA to learn grammars as collections of
allowed or forbidden feature-based combinations in a unified way

Rutgers Subregular Workshop Learning Positive Grammars with BUFIA Payne (Stony Brook) 4

Example: Samala Sibilant Harmony

Examples (Samala Sibilant Harmony)

• Subsequences such as [s...s] that agree in ±Anterior are allowed

• Subsequences such as [s...S] which disagree are banned

! [hasxintilawas] % [hasxintilawaS]

(Hansson, 2010)

Negative Grammar (G−)

[+Ant][-Ant] ∈ G− ⇒ sSt ̸∈ L(G−)

Since [+Ant][-Ant] covers [sS]

Positive Grammar (G+)

[+Str][-Str],[-Ant][-Ant] ∈ G+

⇒ SSt ∈ L(G+)

Since [-Ant][-Ant] covers [SS] and
[+Str][-Str] covers [St]

Rutgers Subregular Workshop Learning Positive Grammars with BUFIA Payne (Stony Brook) 5

Example: Samala Sibilant Harmony

Examples (Samala Sibilant Harmony)

• Subsequences such as [s...s] that agree in ±Anterior are allowed

• Subsequences such as [s...S] which disagree are banned

! [hasxintilawas] % [hasxintilawaS]

(Hansson, 2010)

Negative Grammar (G−)

[+Ant][-Ant] ∈ G− ⇒ sSt ̸∈ L(G−)

Since [+Ant][-Ant] covers [sS]

Positive Grammar (G+)

[+Str][-Str],[-Ant][-Ant] ∈ G+

⇒ SSt ∈ L(G+)

Since [-Ant][-Ant] covers [SS] and
[+Str][-Str] covers [St]

Rutgers Subregular Workshop Learning Positive Grammars with BUFIA Payne (Stony Brook) 5

Example: Samala Sibilant Harmony

Examples (Samala Sibilant Harmony)

• Subsequences such as [s...s] that agree in ±Anterior are allowed

• Subsequences such as [s...S] which disagree are banned

! [hasxintilawas] % [hasxintilawaS]

(Hansson, 2010)

Negative Grammar (G−)

[+Ant][-Ant] ∈ G− ⇒ sSt ̸∈ L(G−)

Since [+Ant][-Ant] covers [sS]

Positive Grammar (G+)

[+Str][-Str],[-Ant][-Ant] ∈ G+

⇒ SSt ∈ L(G+)

Since [-Ant][-Ant] covers [SS] and
[+Str][-Str] covers [St]

Rutgers Subregular Workshop Learning Positive Grammars with BUFIA Payne (Stony Brook) 5

Positive Grammars: Tiling

Figure courtesy of Rogers and Heinz (2014)

Rutgers Subregular Workshop Learning Positive Grammars with BUFIA Payne (Stony Brook) 6

Why Positive Grammars?

Psycholinguistic Motivation Computational Motivation

• Child may construct positive
phonological and phonotactic
grammars (Belth, 2023; Payne,
2023, i.a.)

• Evidence for positive syntactic
and morphological grammars
(Marcus et al., 1992; Yang, 2016;

Belth et al., 2021; Li and Schuler,

2023, i.a.)

• Post-hoc conversion between
positive & negative grammars is
straightforward for symbolic
models (Heinz, 2010b)

• Grammar polarity has
implications for the learning
trajectory

• Post-hoc conversion is
exponentially more costly for
models that use features

Rutgers Subregular Workshop Learning Positive Grammars with BUFIA Payne (Stony Brook) 7

Why Positive Grammars?

Psycholinguistic Motivation Computational Motivation
• Child may construct positive
phonological and phonotactic
grammars (Belth, 2023; Payne,
2023, i.a.)

• Evidence for positive syntactic
and morphological grammars
(Marcus et al., 1992; Yang, 2016;

Belth et al., 2021; Li and Schuler,

2023, i.a.)

• Post-hoc conversion between
positive & negative grammars is
straightforward for symbolic
models (Heinz, 2010b)

• Grammar polarity has
implications for the learning
trajectory

• Post-hoc conversion is
exponentially more costly for
models that use features

Rutgers Subregular Workshop Learning Positive Grammars with BUFIA Payne (Stony Brook) 7

Why Positive Grammars?

Psycholinguistic Motivation Computational Motivation
• Child may construct positive
phonological and phonotactic
grammars (Belth, 2023; Payne,
2023, i.a.)

• Evidence for positive syntactic
and morphological grammars
(Marcus et al., 1992; Yang, 2016;

Belth et al., 2021; Li and Schuler,

2023, i.a.)

• Post-hoc conversion between
positive & negative grammars is
straightforward for symbolic
models (Heinz, 2010b)

• Grammar polarity has
implications for the learning
trajectory

• Post-hoc conversion is
exponentially more costly for
models that use features

Rutgers Subregular Workshop Learning Positive Grammars with BUFIA Payne (Stony Brook) 7

Why Positive Grammars?

Psycholinguistic Motivation Computational Motivation
• Child may construct positive
phonological and phonotactic
grammars (Belth, 2023; Payne,
2023, i.a.)

• Evidence for positive syntactic
and morphological grammars
(Marcus et al., 1992; Yang, 2016;

Belth et al., 2021; Li and Schuler,

2023, i.a.)

• Post-hoc conversion between
positive & negative grammars is
straightforward for symbolic
models (Heinz, 2010b)

• Grammar polarity has
implications for the learning
trajectory

• Post-hoc conversion is
exponentially more costly for
models that use features

Rutgers Subregular Workshop Learning Positive Grammars with BUFIA Payne (Stony Brook) 7

Why Positive Grammars?

Psycholinguistic Motivation Computational Motivation
• Child may construct positive
phonological and phonotactic
grammars (Belth, 2023; Payne,
2023, i.a.)

• Evidence for positive syntactic
and morphological grammars
(Marcus et al., 1992; Yang, 2016;

Belth et al., 2021; Li and Schuler,

2023, i.a.)

• Post-hoc conversion between
positive & negative grammars is
straightforward for symbolic
models (Heinz, 2010b)

• Grammar polarity has
implications for the learning
trajectory

• Post-hoc conversion is
exponentially more costly for
models that use features

Rutgers Subregular Workshop Learning Positive Grammars with BUFIA Payne (Stony Brook) 7

Why Positive Grammars?

Psycholinguistic Motivation Computational Motivation
• Child may construct positive
phonological and phonotactic
grammars (Belth, 2023; Payne,
2023, i.a.)

• Evidence for positive syntactic
and morphological grammars
(Marcus et al., 1992; Yang, 2016;

Belth et al., 2021; Li and Schuler,

2023, i.a.)

• Post-hoc conversion between
positive & negative grammars is
straightforward for symbolic
models (Heinz, 2010b)

• Grammar polarity has
implications for the learning
trajectory

• Post-hoc conversion is
exponentially more costly for
models that use features

Rutgers Subregular Workshop Learning Positive Grammars with BUFIA Payne (Stony Brook) 7

The Cost of Interdefinability

For symbolic models, negative & positive grammars are straightforwardly
interdefinable:

G+ = Σk \ G− G− = Σk \ G+

Two complications for feature-based models:

Number of k-Subfactors
• A model with n binary features
defines s ≤ 2n segments

• Segment-based model: no more
than (s)k ≤ (2n)k k-factors

• Under a feature-based model:
(3n)k possible k-subfactors since
each feature can be positive,
negative, or unspecified

Conversion Process
• For symbolic models, need to

simply check whether some
k-factor f ∈ Σk is in G−

if [s...S] ∈ G− then [s...S] ̸∈ G+

• For feature-based models, a
k-subfactor f should not be
added to G+ if f ∈ G−, but also
if (∃g ∈ G−)[f ⊑ g ∨ g ⊑ f].

Rutgers Subregular Workshop Learning Positive Grammars with BUFIA Payne (Stony Brook) 8

The Cost of Interdefinability

For symbolic models, negative & positive grammars are straightforwardly
interdefinable:

G+ = Σk \ G− G− = Σk \ G+

Two complications for feature-based models:

Number of k-Subfactors
• A model with n binary features
defines s ≤ 2n segments

• Segment-based model: no more
than (s)k ≤ (2n)k k-factors

• Under a feature-based model:
(3n)k possible k-subfactors since
each feature can be positive,
negative, or unspecified

Conversion Process
• For symbolic models, need to

simply check whether some
k-factor f ∈ Σk is in G−

if [s...S] ∈ G− then [s...S] ̸∈ G+

• For feature-based models, a
k-subfactor f should not be
added to G+ if f ∈ G−, but also
if (∃g ∈ G−)[f ⊑ g ∨ g ⊑ f].

Rutgers Subregular Workshop Learning Positive Grammars with BUFIA Payne (Stony Brook) 8

The Cost of Interdefinability

For symbolic models, negative & positive grammars are straightforwardly
interdefinable:

G+ = Σk \ G− G− = Σk \ G+

Two complications for feature-based models:

Number of k-Subfactors

• A model with n binary features
defines s ≤ 2n segments

• Segment-based model: no more
than (s)k ≤ (2n)k k-factors

• Under a feature-based model:
(3n)k possible k-subfactors since
each feature can be positive,
negative, or unspecified

Conversion Process
• For symbolic models, need to

simply check whether some
k-factor f ∈ Σk is in G−

if [s...S] ∈ G− then [s...S] ̸∈ G+

• For feature-based models, a
k-subfactor f should not be
added to G+ if f ∈ G−, but also
if (∃g ∈ G−)[f ⊑ g ∨ g ⊑ f].

Rutgers Subregular Workshop Learning Positive Grammars with BUFIA Payne (Stony Brook) 8

The Cost of Interdefinability

For symbolic models, negative & positive grammars are straightforwardly
interdefinable:

G+ = Σk \ G− G− = Σk \ G+

Two complications for feature-based models:

Number of k-Subfactors
• A model with n binary features
defines s ≤ 2n segments

• Segment-based model: no more
than (s)k ≤ (2n)k k-factors

• Under a feature-based model:
(3n)k possible k-subfactors since
each feature can be positive,
negative, or unspecified

Conversion Process
• For symbolic models, need to

simply check whether some
k-factor f ∈ Σk is in G−

if [s...S] ∈ G− then [s...S] ̸∈ G+

• For feature-based models, a
k-subfactor f should not be
added to G+ if f ∈ G−, but also
if (∃g ∈ G−)[f ⊑ g ∨ g ⊑ f].

Rutgers Subregular Workshop Learning Positive Grammars with BUFIA Payne (Stony Brook) 8

The Cost of Interdefinability

For symbolic models, negative & positive grammars are straightforwardly
interdefinable:

G+ = Σk \ G− G− = Σk \ G+

Two complications for feature-based models:

Number of k-Subfactors
• A model with n binary features
defines s ≤ 2n segments

• Segment-based model: no more
than (s)k ≤ (2n)k k-factors

• Under a feature-based model:
(3n)k possible k-subfactors since
each feature can be positive,
negative, or unspecified

Conversion Process
• For symbolic models, need to

simply check whether some
k-factor f ∈ Σk is in G−

if [s...S] ∈ G− then [s...S] ̸∈ G+

• For feature-based models, a
k-subfactor f should not be
added to G+ if f ∈ G−, but also
if (∃g ∈ G−)[f ⊑ g ∨ g ⊑ f].

Rutgers Subregular Workshop Learning Positive Grammars with BUFIA Payne (Stony Brook) 8

The Cost of Interdefinability

For symbolic models, negative & positive grammars are straightforwardly
interdefinable:

G+ = Σk \ G− G− = Σk \ G+

Two complications for feature-based models:

Number of k-Subfactors
• A model with n binary features
defines s ≤ 2n segments

• Segment-based model: no more
than (s)k ≤ (2n)k k-factors

• Under a feature-based model:
(3n)k possible k-subfactors since
each feature can be positive,
negative, or unspecified

Conversion Process
• For symbolic models, need to

simply check whether some
k-factor f ∈ Σk is in G−

if [s...S] ∈ G− then [s...S] ̸∈ G+

• For feature-based models, a
k-subfactor f should not be
added to G+ if f ∈ G−, but also
if (∃g ∈ G−)[f ⊑ g ∨ g ⊑ f].

Rutgers Subregular Workshop Learning Positive Grammars with BUFIA Payne (Stony Brook) 8

The Cost of Interdefinability

For symbolic models, negative & positive grammars are straightforwardly
interdefinable:

G+ = Σk \ G− G− = Σk \ G+

Two complications for feature-based models:

Number of k-Subfactors
• A model with n binary features
defines s ≤ 2n segments

• Segment-based model: no more
than (s)k ≤ (2n)k k-factors

• Under a feature-based model:
(3n)k possible k-subfactors since
each feature can be positive,
negative, or unspecified

Conversion Process

• For symbolic models, need to
simply check whether some
k-factor f ∈ Σk is in G−

if [s...S] ∈ G− then [s...S] ̸∈ G+

• For feature-based models, a
k-subfactor f should not be
added to G+ if f ∈ G−, but also
if (∃g ∈ G−)[f ⊑ g ∨ g ⊑ f].

Rutgers Subregular Workshop Learning Positive Grammars with BUFIA Payne (Stony Brook) 8

The Cost of Interdefinability

For symbolic models, negative & positive grammars are straightforwardly
interdefinable:

G+ = Σk \ G− G− = Σk \ G+

Two complications for feature-based models:

Number of k-Subfactors
• A model with n binary features
defines s ≤ 2n segments

• Segment-based model: no more
than (s)k ≤ (2n)k k-factors

• Under a feature-based model:
(3n)k possible k-subfactors since
each feature can be positive,
negative, or unspecified

Conversion Process
• For symbolic models, need to
simply check whether some
k-factor f ∈ Σk is in G−

if [s...S] ∈ G− then [s...S] ̸∈ G+

• For feature-based models, a
k-subfactor f should not be
added to G+ if f ∈ G−, but also
if (∃g ∈ G−)[f ⊑ g ∨ g ⊑ f].

Rutgers Subregular Workshop Learning Positive Grammars with BUFIA Payne (Stony Brook) 8

The Cost of Interdefinability

For symbolic models, negative & positive grammars are straightforwardly
interdefinable:

G+ = Σk \ G− G− = Σk \ G+

Two complications for feature-based models:

Number of k-Subfactors
• A model with n binary features
defines s ≤ 2n segments

• Segment-based model: no more
than (s)k ≤ (2n)k k-factors

• Under a feature-based model:
(3n)k possible k-subfactors since
each feature can be positive,
negative, or unspecified

Conversion Process
• For symbolic models, need to
simply check whether some
k-factor f ∈ Σk is in G−

if [s...S] ∈ G− then [s...S] ̸∈ G+

• For feature-based models, a
k-subfactor f should not be
added to G+ if f ∈ G−, but also
if (∃g ∈ G−)[f ⊑ g ∨ g ⊑ f].

Rutgers Subregular Workshop Learning Positive Grammars with BUFIA Payne (Stony Brook) 8

Why Positive Grammars?

Psycholinguistic Motivation Computational Motivation
• Child may construct positive
phonological and phonotactic
grammars (Belth, 2023; Payne,
2023, i.a.)

• Evidence for positive syntactic
and morphological grammars
(Marcus et al., 1992; Yang, 2016;

Belth et al., 2021; Li and Schuler,

2023, i.a.)

• Post-hoc conversion between
positive & negative grammars is
straightforward for symbolic
models (Heinz, 2010b)

• Grammar polarity has implications for
the learning trajectory

• Post-hoc conversion is
exponentially more costly for
models that use features

By fixing k — the size of the learned substructures — we can
straightforwardly adapt the algorithm of Chandlee et al. (2019) to
learn the most general positive and negative grammars over

feature-based models

Rutgers Subregular Workshop Learning Positive Grammars with BUFIA Payne (Stony Brook) 9

Table of Contents

1 Subfactors and Maxfactors

2 Grammars and Their Languages

3 The Learning Algorithm

4 Example: Samala Sibilant Harmony

Rutgers Subregular Workshop Learning Positive Grammars with BUFIA Payne (Stony Brook) 10

Table of Contents

1 Subfactors and Maxfactors

2 Grammars and Their Languages

3 The Learning Algorithm

4 Example: Samala Sibilant Harmony

Rutgers Subregular Workshop Learning Positive Grammars with BUFIA Payne (Stony Brook) 11

Subfactors & Maxfactors

An R-structure A is a subfactor of an R-structure B (notated A ⊑ B) if:

1 There is a mapping between DA and some subset of DB

2 All relations that hold in A also hold over the corresponding elements
in B

An R-structure A is a maxfactor of an R-structure B (notated A ≤ B) if
1 and 2 are satisfied and:

3 All relations that hold in B also hold over the corresponding elements
in A

Subfactor:
Unidirectional

Maxfactor:
Bidirectional

Rutgers Subregular Workshop Learning Positive Grammars with BUFIA Payne (Stony Brook) 12

Subfactors & Maxfactors

An R-structure A is a subfactor of an R-structure B (notated A ⊑ B) if:

1 There is a mapping between DA and some subset of DB

2 All relations that hold in A also hold over the corresponding elements
in B

An R-structure A is a maxfactor of an R-structure B (notated A ≤ B) if
1 and 2 are satisfied and:

3 All relations that hold in B also hold over the corresponding elements
in A

Subfactor:
Unidirectional

Maxfactor:
Bidirectional

Rutgers Subregular Workshop Learning Positive Grammars with BUFIA Payne (Stony Brook) 12

Subfactors & Maxfactors

An R-structure A is a subfactor of an R-structure B (notated A ⊑ B) if:

1 There is a mapping between DA and some subset of DB

2 All relations that hold in A also hold over the corresponding elements
in B

An R-structure A is a maxfactor of an R-structure B (notated A ≤ B) if
1 and 2 are satisfied and:

3 All relations that hold in B also hold over the corresponding elements
in A

Subfactor:
Unidirectional

Maxfactor:
Bidirectional

Rutgers Subregular Workshop Learning Positive Grammars with BUFIA Payne (Stony Brook) 12

Subfactors & Maxfactors

An R-structure A is a subfactor of an R-structure B (notated A ⊑ B) if:

1 There is a mapping between DA and some subset of DB

2 All relations that hold in A also hold over the corresponding elements
in B

An R-structure A is a maxfactor of an R-structure B (notated A ≤ B) if
1 and 2 are satisfied and:

3 All relations that hold in B also hold over the corresponding elements
in A

Subfactor:
Unidirectional

Maxfactor:
Bidirectional

Rutgers Subregular Workshop Learning Positive Grammars with BUFIA Payne (Stony Brook) 12

Subfactors & Maxfactors

An R-structure A is a subfactor of an R-structure B (notated A ⊑ B) if:

1 There is a mapping between DA and some subset of DB

2 All relations that hold in A also hold over the corresponding elements
in B

An R-structure A is a maxfactor of an R-structure B (notated A ≤ B) if
1 and 2 are satisfied and:

3 All relations that hold in B also hold over the corresponding elements
in A

Subfactor:
Unidirectional

Maxfactor:
Bidirectional

Rutgers Subregular Workshop Learning Positive Grammars with BUFIA Payne (Stony Brook) 12

Subfactors & Maxfactors

An R-structure A is a subfactor of an R-structure B (notated A ⊑ B) if:

1 There is a mapping between DA and some subset of DB

2 All relations that hold in A also hold over the corresponding elements
in B

An R-structure A is a maxfactor of an R-structure B (notated A ≤ B) if
1 and 2 are satisfied and:

3 All relations that hold in B also hold over the corresponding elements
in A

Subfactor:
Unidirectional

Maxfactor:
Bidirectional

Rutgers Subregular Workshop Learning Positive Grammars with BUFIA Payne (Stony Brook) 12

Subfactors & Maxfactors

An R-structure A is a subfactor of an R-structure B (notated A ⊑ B) if:

1 There is a mapping between DA and some subset of DB

2 All relations that hold in A also hold over the corresponding elements
in B

An R-structure A is a maxfactor of an R-structure B (notated A ≤ B) if
1 and 2 are satisfied and:

3 All relations that hold in B also hold over the corresponding elements
in A

Subfactor:
Unidirectional

Maxfactor:
Bidirectional

Rutgers Subregular Workshop Learning Positive Grammars with BUFIA Payne (Stony Brook) 12

Subfactors vs. Maxfactors

Examples (Samala Sibilant Harmony)

1 2 3

+str
+ant

+str
-ant

-str
+ant

< <

<

Subfactor:
Unidirectional

Maxfactor:
Bidirectional

Rutgers Subregular Workshop Learning Positive Grammars with BUFIA Payne (Stony Brook) 13

Subfactors vs. Maxfactors

Examples (Samala Sibilant Harmony)

1 2 3

1 2

+str
+ant

+str
-ant

-str
+ant

+str
+ant

+str
-ant

< <

<

<

Subfactor:
Unidirectional

Maxfactor:
Bidirectional

Rutgers Subregular Workshop Learning Positive Grammars with BUFIA Payne (Stony Brook) 14

Subfactors vs. Maxfactors

Examples (Samala Sibilant Harmony)

1 2 3

1 2

+str
+ant

+str
-ant

-str
+ant

+str
+ant

+str
-ant

< <

<

<

!Subfactor:
Unidirectional

!Maxfactor:
Bidirectional

Rutgers Subregular Workshop Learning Positive Grammars with BUFIA Payne (Stony Brook) 15

Subfactors vs. Maxfactors

Examples (Samala Sibilant Harmony)

1 2 3 1 3

1 2

+str
+ant

+str
-ant

-str
+ant

+str
+ant

+str
-ant

+ant +ant

< < <

<

<

Subfactor:
Unidirectional

Maxfactor:
Bidirectional

Rutgers Subregular Workshop Learning Positive Grammars with BUFIA Payne (Stony Brook) 16

Subfactors vs. Maxfactors

Examples (Samala Sibilant Harmony)

1 2 3 1 3

1 2

+str
+ant

+str
-ant

-str
+ant

+str
+ant

+str
-ant

+ant +ant

< < <

<

<

!Subfactor:
Unidirectional

%Maxfactor:
Bidirectional

Rutgers Subregular Workshop Learning Positive Grammars with BUFIA Payne (Stony Brook) 17

Subfactors vs. Maxfactors

Examples (Samala Sibilant Harmony)

1 2 3 1 3

1 2 2 3

+str
+ant

+str
-ant

-str
+ant

+str
+ant

+str
-ant

+ant +ant

+str -str

< < <

<

< <

Subfactor:
Unidirectional

Maxfactor:
Bidirectional

Rutgers Subregular Workshop Learning Positive Grammars with BUFIA Payne (Stony Brook) 18

Subfactors vs. Maxfactors

Examples (Samala Sibilant Harmony)

1 2 3 1 3

1 2 2 3

+str
+ant

+str
-ant

-str
+ant

+str
+ant

+str
-ant

+ant +ant

+str -str

< < <

<

< <

!Subfactor:
Unidirectional

%Maxfactor:
Bidirectional

Rutgers Subregular Workshop Learning Positive Grammars with BUFIA Payne (Stony Brook) 19

k-Subfactors and k-Maxfactors

Definition: k-Subfactors

If A ⊑ B and |A| = k, then A is a
k-subfactor of B

Definition: k-Maxfactors

If A ≤ B and |A| = k , then A is
k-maxfactor of B

Let the set of k-subfactors of an
R-structure B be given by:

Sfack(B) := {A | A ⊑ B, |A| = k}

Let the set of k-maxfactors of B
be given by:

Mfack(B) := {A | A ≤ B, |A| = k}

Rutgers Subregular Workshop Learning Positive Grammars with BUFIA Payne (Stony Brook) 20

k-Subfactors and k-Maxfactors

Definition: k-Subfactors

If A ⊑ B and |A| = k, then A is a
k-subfactor of B

Definition: k-Maxfactors

If A ≤ B and |A| = k , then A is
k-maxfactor of B

Let the set of k-subfactors of an
R-structure B be given by:

Sfack(B) := {A | A ⊑ B, |A| = k}

Let the set of k-maxfactors of B
be given by:

Mfack(B) := {A | A ≤ B, |A| = k}

Rutgers Subregular Workshop Learning Positive Grammars with BUFIA Payne (Stony Brook) 20

Table of Contents

1 Subfactors and Maxfactors

2 Grammars and Their Languages

3 The Learning Algorithm

4 Example: Samala Sibilant Harmony

Rutgers Subregular Workshop Learning Positive Grammars with BUFIA Payne (Stony Brook) 21

Positive vs. Negative Grammars

Grammar G = finite set of k-subfactors
Language defined by G depends on its interpretation:

Negative Grammar (G−)

Elements of G− are forbidden,
and strings in L(G−) contain
no forbidden subfactors

Positive Grammar (G+)

Elements of G+ are
permissible, and strings in
L(G+) are those which are
tiled by these elements

Rutgers Subregular Workshop Learning Positive Grammars with BUFIA Payne (Stony Brook) 22

Positive vs. Negative Grammars

Grammar G = finite set of k-subfactors
Language defined by G depends on its interpretation:

Negative Grammar (G−)

Elements of G− are forbidden,
and strings in L(G−) contain
no forbidden subfactors

Positive Grammar (G+)

Elements of G+ are
permissible, and strings in
L(G+) are those which are
tiled by these elements

Rutgers Subregular Workshop Learning Positive Grammars with BUFIA Payne (Stony Brook) 22

Positive vs. Negative Grammars

Grammar G = finite set of k-subfactors
Language defined by G depends on its interpretation:

Negative Grammar (G−)

Elements of G− are forbidden,
and strings in L(G−) contain
no forbidden subfactors

Positive Grammar (G+)

Elements of G+ are
permissible, and strings in
L(G+) are those which are
tiled by these elements

Rutgers Subregular Workshop Learning Positive Grammars with BUFIA Payne (Stony Brook) 22

Languages of Positive vs. Negative Grammars

Negative Grammar

The language L(G−) of G− is given
by:

L(G−) ={w ∈ Σ∗ | (∀S ∈ Mfack(M,w))

[Sfack(S) ∩ G− = ∅]}

or equivalently by:

L(G−) ={w ∈ Σ∗ | (∄S ∈ Mfack(M,w))

[Sfack(S) ∩ G− ̸= ∅]}

Positive Grammar

The language L(G+) of G+ is given
by:

L(G+) ={w ∈ Σ∗ | (∀S ∈ Mfack(M,w))

[Sfack(S) ∩ G+ ̸= ∅]}

or equivalently by:

L(G+) ={w ∈ Σ∗ | (∄S ∈ Mfack(M,w))

[Sfack(S) ∩ G+ = ∅]}

Rutgers Subregular Workshop Learning Positive Grammars with BUFIA Payne (Stony Brook) 23

Languages of Positive vs. Negative Grammars

Negative Grammar

The language L(G−) of G− is given
by:

L(G−) ={w ∈ Σ∗ | (∀S ∈ Mfack(M,w))

[Sfack(S) ∩ G−= ∅]}

or equivalently by:

L(G−) ={w ∈ Σ∗ | (∄S ∈ Mfack(M,w))

[Sfack(S) ∩ G− ̸= ∅]}

Positive Grammar

The language L(G+) of G+ is given
by:

L(G+) ={w ∈ Σ∗ | (∀S ∈ Mfack(M,w))

[Sfack(S) ∩ G+ ̸= ∅]}

or equivalently by:

L(G+) ={w ∈ Σ∗ | (∄S ∈ Mfack(M,w))

[Sfack(S) ∩ G+= ∅]}

Positive Grammar Negative Grammar

Negative Grammar Positive Grammar

∈ G ̸∈ G

∀

∃

Rutgers Subregular Workshop Learning Positive Grammars with BUFIA Payne (Stony Brook) 24

Table of Contents

1 Subfactors and Maxfactors

2 Grammars and Their Languages

3 The Learning Algorithm

4 Example: Samala Sibilant Harmony

Rutgers Subregular Workshop Learning Positive Grammars with BUFIA Payne (Stony Brook) 25

Previous Work

Crucial insight of Chandlee et al. (2019): grammatical entailment

[]

[+Str][+Ant] [+Voi] ...

[+Ant, +Str] [+Str][]

[+Ant, +Str][] [+Str][+Ant, +Str] [+Str][+Str]

% % %

Rutgers Subregular Workshop Learning Positive Grammars with BUFIA Payne (Stony Brook) 26

Intuition

S

For a negative grammar:

• Add S to G− if S ̸⊑ x for any x ∈ D

• Equivalent: Given the set of all
maxfactors that are superfactors of S ,
none are attested in D

Positive Grammar Negative Grammar

Negative Grammar Positive Grammar

∈ D ̸∈ D

∀

∃

For a positive grammar:

• Given the set of all maxfactors that are
superfactors of S , all are attested in D

Rutgers Subregular Workshop Learning Positive Grammars with BUFIA Payne (Stony Brook) 27

Intuition

S

For a negative grammar:

• Add S to G− if S ̸⊑ x for any x ∈ D

• Equivalent: Given the set of all
maxfactors that are superfactors of S ,
none are attested in D

Positive Grammar Negative Grammar

Negative Grammar Positive Grammar

∈ D ̸∈ D

∀

∃

For a positive grammar:

• Given the set of all maxfactors that are
superfactors of S , all are attested in D

Rutgers Subregular Workshop Learning Positive Grammars with BUFIA Payne (Stony Brook) 27

Intuition

S

For a negative grammar:

• Add S to G− if S ̸⊑ x for any x ∈ D

• Equivalent: Given the set of all
maxfactors that are superfactors of S ,
none are attested in D

Positive Grammar Negative Grammar

Negative Grammar Positive Grammar

∈ D ̸∈ D

∀

∃

For a positive grammar:

• Given the set of all maxfactors that are
superfactors of S , all are attested in D

Rutgers Subregular Workshop Learning Positive Grammars with BUFIA Payne (Stony Brook) 27

Intuition

S

For a negative grammar:

• Add S to G− if S ̸⊑ x for any x ∈ D

• Equivalent: Given the set of all
maxfactors that are superfactors of S ,
none are attested in D

Positive Grammar Negative Grammar

Negative Grammar Positive Grammar

∈ D ̸∈ D

∀

∃

For a positive grammar:

• Given the set of all maxfactors that are
superfactors of S , all are attested in D

Rutgers Subregular Workshop Learning Positive Grammars with BUFIA Payne (Stony Brook) 27

Extensions

Extensions of a Subfactor

The extensions of a subfactor S are defined as follows:

Extk(S) ={A ∈ Sfack(M,Σ∗) |
S ⊑ A ∧ (∄A′)[|A′| = k ∧ A ⊑ A′]}

(1)

Intuition: extensions of S are all k-maxfactors that are superfactors of S .

Examples (Extension of [+Ant])

If S = [+Ant] and the only features available are ±Ant, ±Voi and
±Str:

Extk(S) ={[+Ant, -Str, +Voi], [+Ant, +Str, +Voi]

[+Ant, -Str, -Voi], [+Ant, +Str, -Voi]}

Rutgers Subregular Workshop Learning Positive Grammars with BUFIA Payne (Stony Brook) 28

Learning Algorithm

S

• Bottom-up traversal

• For a given subfactor S , check whether:
• G is negative and

(∀s ′ ∈ Extk(S))[∄x ∈ D, s ′ ≤ x])

• G is positive and

(∀s ′ ∈ Extk(S))[∃x ∈ D, s ′ ≤ x])

• If either condition is met:
• Add S to G !

• Otherwise:
• Add the least superfactors of S to

the queue to be considered next

Rutgers Subregular Workshop Learning Positive Grammars with BUFIA Payne (Stony Brook) 29

Learning Algorithm

S

• Bottom-up traversal

• For a given subfactor S , check whether:

• G is negative and

(∀s ′ ∈ Extk(S))[∄x ∈ D, s ′ ≤ x])

• G is positive and

(∀s ′ ∈ Extk(S))[∃x ∈ D, s ′ ≤ x])

• If either condition is met:
• Add S to G !

• Otherwise:
• Add the least superfactors of S to

the queue to be considered next

Rutgers Subregular Workshop Learning Positive Grammars with BUFIA Payne (Stony Brook) 29

Learning Algorithm

S

• Bottom-up traversal

• For a given subfactor S , check whether:
• G is negative and

(∀s ′ ∈ Extk(S))[∄x ∈ D, s ′ ≤ x])

• G is positive and

(∀s ′ ∈ Extk(S))[∃x ∈ D, s ′ ≤ x])

• If either condition is met:
• Add S to G !

• Otherwise:
• Add the least superfactors of S to

the queue to be considered next

Rutgers Subregular Workshop Learning Positive Grammars with BUFIA Payne (Stony Brook) 29

Learning Algorithm

S

• Bottom-up traversal

• For a given subfactor S , check whether:
• G is negative and

(∀s ′ ∈ Extk(S))[∄x ∈ D, s ′ ≤ x])

• G is positive and

(∀s ′ ∈ Extk(S))[∃x ∈ D, s ′ ≤ x])

• If either condition is met:
• Add S to G !

• Otherwise:
• Add the least superfactors of S to

the queue to be considered next

Rutgers Subregular Workshop Learning Positive Grammars with BUFIA Payne (Stony Brook) 29

Learning Algorithm

S

• Bottom-up traversal

• For a given subfactor S , check whether:
• G is negative and

(∀s ′ ∈ Extk(S))[∄x ∈ D, s ′ ≤ x])

• G is positive and

(∀s ′ ∈ Extk(S))[∃x ∈ D, s ′ ≤ x])

• If either condition is met:
• Add S to G !

• Otherwise:
• Add the least superfactors of S to

the queue to be considered next

Rutgers Subregular Workshop Learning Positive Grammars with BUFIA Payne (Stony Brook) 29

Learning Algorithm

S

• Bottom-up traversal

• For a given subfactor S , check whether:
• G is negative and

(∀s ′ ∈ Extk(S))[∄x ∈ D, s ′ ≤ x])

• G is positive and

(∀s ′ ∈ Extk(S))[∃x ∈ D, s ′ ≤ x])

• If either condition is met:
• Add S to G !

• Otherwise:
• Add the least superfactors of S to

the queue to be considered next

Rutgers Subregular Workshop Learning Positive Grammars with BUFIA Payne (Stony Brook) 29

Least Superfactors

Next Superfactor

We extract the least superfactors of S — those that differ minimally
from S — by calling NextSupFact(s) where NextSupFact() is defined as
follows:

NextSupFact(S) ={A ∈ Sfack(M,Σ∗) |
S ⊑ A ∧ (∄A′)[S ⊑ A′ ⊑ A]}

(2)

Intuition: NextSupFact() returns the superfactors of S that differ
minimally from S .

Examples (Next superfactors of [+Ant])

If S = [+Ant] and the only features available are ±Ant, ±Voi and
±Str:

NextSupFact(S) ={[+Ant, -Str], [+Ant, +Str]

[+Ant, -Voi], [+Ant, +Voi]}
Rutgers Subregular Workshop Learning Positive Grammars with BUFIA Payne (Stony Brook) 30

Learning Guarantees

Fix Σ, model M, positive integer k, and polarity p. For any language
L ∈ L p(M, k) and for any finite sample D ⊆ L, return a grammar Gp

such that:

1 Gp is consistent, that is, D ⊆ L(Gp).

2 L(Gp) is a smallest language in L p(M, k) which covers D, so that
for all L ∈ L p(M, k) where D ⊆ L, we have L(Gp) ⊆ L.

3 Gp includes R-structures S that are restrictions of R-structures S ′ in
other grammars G ′ that also satisfy (1) and (2). That is, for all G ′

satisfying (1) and (2) and for all S ′ ∈ G ′, there exists some S ∈ Gp

such that S ⊑ S ′.

Rutgers Subregular Workshop Learning Positive Grammars with BUFIA Payne (Stony Brook) 31

Learning Guarantees

Fix Σ, model M, positive integer k, and polarity p. For any language
L ∈ L p(M, k) and for any finite sample D ⊆ L, return a grammar Gp

such that:

1 Gp is consistent, that is, D ⊆ L(Gp).

2 L(Gp) is a smallest language in L p(M, k) which covers D, so that
for all L ∈ L p(M, k) where D ⊆ L, we have L(Gp) ⊆ L.

3 Gp includes R-structures S that are restrictions of R-structures S ′ in
other grammars G ′ that also satisfy (1) and (2). That is, for all G ′

satisfying (1) and (2) and for all S ′ ∈ G ′, there exists some S ∈ Gp

such that S ⊑ S ′.

Rutgers Subregular Workshop Learning Positive Grammars with BUFIA Payne (Stony Brook) 31

Learning Guarantees

Fix Σ, model M, positive integer k, and polarity p. For any language
L ∈ L p(M, k) and for any finite sample D ⊆ L, return a grammar Gp

such that:

1 Gp is consistent, that is, D ⊆ L(Gp).

2 L(Gp) is a smallest language in L p(M, k) which covers D, so that
for all L ∈ L p(M, k) where D ⊆ L, we have L(Gp) ⊆ L.

3 Gp includes R-structures S that are restrictions of R-structures S ′ in
other grammars G ′ that also satisfy (1) and (2). That is, for all G ′

satisfying (1) and (2) and for all S ′ ∈ G ′, there exists some S ∈ Gp

such that S ⊑ S ′.

Rutgers Subregular Workshop Learning Positive Grammars with BUFIA Payne (Stony Brook) 31

Learning Guarantees

Fix Σ, model M, positive integer k, and polarity p. For any language
L ∈ L p(M, k) and for any finite sample D ⊆ L, return a grammar Gp

such that:

1 Gp is consistent, that is, D ⊆ L(Gp).

2 L(Gp) is a smallest language in L p(M, k) which covers D, so that
for all L ∈ L p(M, k) where D ⊆ L, we have L(Gp) ⊆ L.

3 Gp includes R-structures S that are restrictions of R-structures S ′ in
other grammars G ′ that also satisfy (1) and (2). That is, for all G ′

satisfying (1) and (2) and for all S ′ ∈ G ′, there exists some S ∈ Gp

such that S ⊑ S ′.

Rutgers Subregular Workshop Learning Positive Grammars with BUFIA Payne (Stony Brook) 31

Table of Contents

1 Subfactors and Maxfactors

2 Grammars and Their Languages

3 The Learning Algorithm

4 Example: Samala Sibilant Harmony

Rutgers Subregular Workshop Learning Positive Grammars with BUFIA Payne (Stony Brook) 32

Applying the Algorithm: Samala Sibilant Harmony

Examples (Samala Sibilant Harmony)

Simplifying Assumptions:

• Two features: ±Ant (relevant) and ±Voi (irrelevant)

• k = 2

• All licit subsequences are attested (cf. Heinz, 2010a)

...

[
+Ant
-Voi

] []
[+Ant][+Ant] [+Ant][-Ant] [-Ant][+Ant] [-Ant][-Ant] [+Voi][+Voi] ...

[+Ant][] [-Ant][] [][+Ant] [][-Ant] [+Voi][] [-Voi][] [][+Voi] [][-Voi]

[][]

...

Rutgers Subregular Workshop Learning Positive Grammars with BUFIA Payne (Stony Brook) 33

Applying the Algorithm: Samala Sibilant Harmony

Examples (Samala Sibilant Harmony)

Simplifying Assumptions:
• Two features: ±Ant (relevant) and ±Voi (irrelevant)

• k = 2

• All licit subsequences are attested (cf. Heinz, 2010a)

...

[
+Ant
-Voi

] []
[+Ant][+Ant] [+Ant][-Ant] [-Ant][+Ant] [-Ant][-Ant] [+Voi][+Voi] ...

[+Ant][] [-Ant][] [][+Ant] [][-Ant] [+Voi][] [-Voi][] [][+Voi] [][-Voi]

[][]

...

Rutgers Subregular Workshop Learning Positive Grammars with BUFIA Payne (Stony Brook) 33

Applying the Algorithm: Samala Sibilant Harmony

Examples (Samala Sibilant Harmony)

Simplifying Assumptions:
• Two features: ±Ant (relevant) and ±Voi (irrelevant)

• k = 2

• All licit subsequences are attested (cf. Heinz, 2010a)

...

[
+Ant
-Voi

] []
[+Ant][+Ant] [+Ant][-Ant] [-Ant][+Ant] [-Ant][-Ant] [+Voi][+Voi] ...

[+Ant][] [-Ant][] [][+Ant] [][-Ant] [+Voi][] [-Voi][] [][+Voi] [][-Voi]

[][]

...

Rutgers Subregular Workshop Learning Positive Grammars with BUFIA Payne (Stony Brook) 33

Applying the Algorithm: Samala Sibilant Harmony

Examples (Samala Sibilant Harmony)

Simplifying Assumptions:
• Two features: ±Ant (relevant) and ±Voi (irrelevant)

• k = 2

• All licit subsequences are attested (cf. Heinz, 2010a)

...

[
+Ant
-Voi

] []
[+Ant][+Ant] [+Ant][-Ant] [-Ant][+Ant] [-Ant][-Ant] [+Voi][+Voi] ...

[+Ant][] [-Ant][] [][+Ant] [][-Ant] [+Voi][] [-Voi][] [][+Voi] [][-Voi]

[][]

...

Rutgers Subregular Workshop Learning Positive Grammars with BUFIA Payne (Stony Brook) 33

Applying the Algorithm: Samala Sibilant Harmony

Examples (Samala Sibilant Harmony)

Simplifying Assumptions:
• Two features: ±Ant (relevant) and ±Voi (irrelevant)

• k = 2

• All licit subsequences are attested (cf. Heinz, 2010a)

...

[
+Ant
-Voi

] []
[+Ant][+Ant] [+Ant][-Ant] [-Ant][+Ant] [-Ant][-Ant] [+Voi][+Voi] ...

[+Ant][] [-Ant][] [][+Ant] [][-Ant] [+Voi][] [-Voi][] [][+Voi] [][-Voi]

[][]

...

Rutgers Subregular Workshop Learning Positive Grammars with BUFIA Payne (Stony Brook) 33

Applying the Algorithm: Samala Sibilant Harmony

Examples (Samala Sibilant Harmony)

...

[
+Ant
-Voi

] []
[+Ant][+Ant] [+Ant][-Ant] [-Ant][+Ant] [-Ant][-Ant] [+Voi][+Voi] ...

[+Ant][] [-Ant][] [][+Ant] [][-Ant] [+Voi][] [-Voi][] [][+Voi] [][-Voi]

[][]

...

Negative Grammar Positive Grammar

Is there any element in Extk([][]) which
is a 2-maxfactor of some x ∈ D?

Is there any element in Extk([][]) which
is not a 2-maxfactor of some x ∈ D?

e.g. [+Voi, +Ant][+Voi, +Ant]
∈ Extk([][]), but [z...z] is licit and
attested.

e.g. [+Voi, +Ant][+Voi, -Ant]
∈ Extk([][]), but [z...Z] is illicit and
unattested.

Keep searching!

Rutgers Subregular Workshop Learning Positive Grammars with BUFIA Payne (Stony Brook) 34

Applying the Algorithm: Samala Sibilant Harmony

Examples (Samala Sibilant Harmony)

...

[
+Ant
-Voi

] []
[+Ant][+Ant] [+Ant][-Ant] [-Ant][+Ant] [-Ant][-Ant] [+Voi][+Voi] ...

[+Ant][] [-Ant][] [][+Ant] [][-Ant] [+Voi][] [-Voi][] [][+Voi] [][-Voi]

[][]

...

Negative Grammar Positive Grammar
Is there any element in Extk([][]) which
is a 2-maxfactor of some x ∈ D?

Is there any element in Extk([][]) which
is not a 2-maxfactor of some x ∈ D?

e.g. [+Voi, +Ant][+Voi, +Ant]
∈ Extk([][]), but [z...z] is licit and
attested.

e.g. [+Voi, +Ant][+Voi, -Ant]
∈ Extk([][]), but [z...Z] is illicit and
unattested.

Keep searching!

Rutgers Subregular Workshop Learning Positive Grammars with BUFIA Payne (Stony Brook) 34

Applying the Algorithm: Samala Sibilant Harmony

Examples (Samala Sibilant Harmony)

...

[
+Ant
-Voi

] []
[+Ant][+Ant] [+Ant][-Ant] [-Ant][+Ant] [-Ant][-Ant] [+Voi][+Voi] ...

[+Ant][] [-Ant][] [][+Ant] [][-Ant] [+Voi][] [-Voi][] [][+Voi] [][-Voi]

[][]

...

Negative Grammar Positive Grammar
Is there any element in Extk([][]) which
is a 2-maxfactor of some x ∈ D?

Is there any element in Extk([][]) which
is not a 2-maxfactor of some x ∈ D?

e.g. [+Voi, +Ant][+Voi, +Ant]
∈ Extk([][]), but [z...z] is licit and
attested.

e.g. [+Voi, +Ant][+Voi, -Ant]
∈ Extk([][]), but [z...Z] is illicit and
unattested.

Keep searching!

Rutgers Subregular Workshop Learning Positive Grammars with BUFIA Payne (Stony Brook) 34

Applying the Algorithm: Samala Sibilant Harmony

Examples (Samala Sibilant Harmony)

...

[
+Ant
-Voi

] []
[+Ant][+Ant] [+Ant][-Ant] [-Ant][+Ant] [-Ant][-Ant] [+Voi][+Voi] ...

[+Ant][] [-Ant][] [][+Ant] [][-Ant] [+Voi][] [-Voi][] [][+Voi] [][-Voi]

[][]

...

Negative Grammar Positive Grammar
Is there any element in Extk([][]) which
is a 2-maxfactor of some x ∈ D?

Is there any element in Extk([][]) which
is not a 2-maxfactor of some x ∈ D?

e.g. [+Voi, +Ant][+Voi, +Ant]
∈ Extk([][]), but [z...z] is licit and
attested.

e.g. [+Voi, +Ant][+Voi, -Ant]
∈ Extk([][]), but [z...Z] is illicit and
unattested.

Keep searching!

Rutgers Subregular Workshop Learning Positive Grammars with BUFIA Payne (Stony Brook) 34

Applying the Algorithm: Samala Sibilant Harmony

Examples (Samala Sibilant Harmony)

...

[
+Ant
-Voi

] []
[+Ant][+Ant] [+Ant][-Ant] [-Ant][+Ant] [-Ant][-Ant] [+Voi][+Voi] ...

[+Ant][] [-Ant][] [][+Ant] [][-Ant] [+Voi][] [-Voi][] [][+Voi] [][-Voi]

[][]

...

Negative Grammar Positive Grammar
Is there any element in Extk([][]) which
is a 2-maxfactor of some x ∈ D?

Is there any element in Extk([][]) which
is not a 2-maxfactor of some x ∈ D?

e.g. [+Voi, +Ant][+Voi, +Ant]
∈ Extk([][]), but [z...z] is licit and
attested.

e.g. [+Voi, +Ant][+Voi, -Ant]
∈ Extk([][]), but [z...Z] is illicit and
unattested.

Keep searching!

Rutgers Subregular Workshop Learning Positive Grammars with BUFIA Payne (Stony Brook) 34

Applying the Algorithm: Samala Sibilant Harmony

Examples (Samala Sibilant Harmony)

...

[
+Ant
-Voi

] []
[+Ant][+Ant] [+Ant][-Ant] [-Ant][+Ant] [-Ant][-Ant] [+Voi][+Voi] ...

[+Ant][] [-Ant][] [][+Ant] [][-Ant] [+Voi][] [-Voi][] [][+Voi] [][-Voi]

[][]

...

Negative Grammar Positive Grammar
Is there any element in Extk([][]) which
is a 2-maxfactor of some x ∈ D?

Is there any element in Extk([][]) which
is not a 2-maxfactor of some x ∈ D?

e.g. [+Voi, +Ant][+Voi, +Ant]
∈ Extk([][]), but [z...z] is licit and
attested.

e.g. [+Voi, +Ant][+Voi, -Ant]
∈ Extk([][]), but [z...Z] is illicit and
unattested.

Keep searching!
Rutgers Subregular Workshop Learning Positive Grammars with BUFIA Payne (Stony Brook) 34

Applying the Algorithm: Samala Sibilant Harmony

Examples (Samala Sibilant Harmony)

...

[
+Ant
-Voi

] []
[+Ant][+Ant] [+Ant][-Ant] [-Ant][+Ant] [-Ant][-Ant] [+Voi][+Voi] ...

[+Ant][] [-Ant][] [][+Ant] [][-Ant] [+Voi][] [-Voi][] [][+Voi] [][-Voi]

[][]

...

• Extract the least superfactors of [][] and consider each of them

• Still not specified enough:
• Any subfactor with ±Ant specified in one position has licit and illicit

maxfactors in its extension
[+Ant][]⊑ [+Ant][+Ant] but [+Ant][]⊑ [+Ant][-Ant]

• ±Voi has no bearing on licitness

Keep searching!

Rutgers Subregular Workshop Learning Positive Grammars with BUFIA Payne (Stony Brook) 35

Applying the Algorithm: Samala Sibilant Harmony

Examples (Samala Sibilant Harmony)

...

[
+Ant
-Voi

] []
[+Ant][+Ant] [+Ant][-Ant] [-Ant][+Ant] [-Ant][-Ant] [+Voi][+Voi] ...

[+Ant][] [-Ant][] [][+Ant] [][-Ant] [+Voi][] [-Voi][] [][+Voi] [][-Voi]

[][]

...

• Extract the least superfactors of [][] and consider each of them
• Still not specified enough:

• Any subfactor with ±Ant specified in one position has licit and illicit
maxfactors in its extension
[+Ant][]⊑ [+Ant][+Ant] but [+Ant][]⊑ [+Ant][-Ant]

• ±Voi has no bearing on licitness

Keep searching!

Rutgers Subregular Workshop Learning Positive Grammars with BUFIA Payne (Stony Brook) 35

Applying the Algorithm: Samala Sibilant Harmony

Examples (Samala Sibilant Harmony)

...

[
+Ant
-Voi

] []
[+Ant][+Ant] [+Ant][-Ant] [-Ant][+Ant] [-Ant][-Ant] [+Voi][+Voi] ...

[+Ant][] [-Ant][] [][+Ant] [][-Ant] [+Voi][] [-Voi][] [][+Voi] [][-Voi]

[][]

...

• Extract the least superfactors of [][] and consider each of them
• Still not specified enough:

• Any subfactor with ±Ant specified in one position has licit and illicit
maxfactors in its extension

[+Ant][]⊑ [+Ant][+Ant] but [+Ant][]⊑ [+Ant][-Ant]

• ±Voi has no bearing on licitness

Keep searching!

Rutgers Subregular Workshop Learning Positive Grammars with BUFIA Payne (Stony Brook) 35

Applying the Algorithm: Samala Sibilant Harmony

Examples (Samala Sibilant Harmony)

...

[
+Ant
-Voi

] []
[+Ant][+Ant] [+Ant][-Ant] [-Ant][+Ant] [-Ant][-Ant] [+Voi][+Voi] ...

[+Ant][] [-Ant][] [][+Ant] [][-Ant] [+Voi][] [-Voi][] [][+Voi] [][-Voi]

[][]

...

• Extract the least superfactors of [][] and consider each of them
• Still not specified enough:

• Any subfactor with ±Ant specified in one position has licit and illicit
maxfactors in its extension
[+Ant][]⊑ [+Ant][+Ant] but [+Ant][]⊑ [+Ant][-Ant]

• ±Voi has no bearing on licitness

Keep searching!

Rutgers Subregular Workshop Learning Positive Grammars with BUFIA Payne (Stony Brook) 35

Applying the Algorithm: Samala Sibilant Harmony

Examples (Samala Sibilant Harmony)

...

[
+Ant
-Voi

] []
[+Ant][+Ant] [+Ant][-Ant] [-Ant][+Ant] [-Ant][-Ant] [+Voi][+Voi] ...

[+Ant][] [-Ant][] [][+Ant] [][-Ant] [+Voi][] [-Voi][] [][+Voi] [][-Voi]

[][]

...

• Extract the least superfactors of [][] and consider each of them
• Still not specified enough:

• Any subfactor with ±Ant specified in one position has licit and illicit
maxfactors in its extension
[+Ant][]⊑ [+Ant][+Ant] but [+Ant][]⊑ [+Ant][-Ant]

• ±Voi has no bearing on licitness

Keep searching!
Rutgers Subregular Workshop Learning Positive Grammars with BUFIA Payne (Stony Brook) 35

Applying the Algorithm: Samala Sibilant Harmony

Examples (Samala Sibilant Harmony)

Keep searching!

...

[
+Ant
-Voi

] []
[+Ant][+Ant] [+Ant][-Ant] [-Ant][+Ant] [-Ant][-Ant] [+Voi][+Voi] ...

[+Ant][] [-Ant][] [][+Ant] [][-Ant] [+Voi][] [-Voi][] [][+Voi] [][-Voi]

[][]

...

Negative Grammar Positive Grammar

Is there any element in
Extk([+Ant][-Ant]) which is a
2-maxfactor of some x ∈ D? No!

Is there any element in
Extk([+Ant][+Ant]) which is not a
2-maxfactor of some x ∈ D? No!

[+Ant][-Ant] is added to G− [+Ant][+Ant] is added to G+

Rutgers Subregular Workshop Learning Positive Grammars with BUFIA Payne (Stony Brook) 36

Applying the Algorithm: Samala Sibilant Harmony

Examples (Samala Sibilant Harmony)

Keep searching!

...

[
+Ant
-Voi

] []
[+Ant][+Ant] [+Ant][-Ant] [-Ant][+Ant] [-Ant][-Ant] [+Voi][+Voi] ...

[+Ant][] [-Ant][] [][+Ant] [][-Ant] [+Voi][] [-Voi][] [][+Voi] [][-Voi]

[][]

...

Negative Grammar Positive Grammar
Is there any element in
Extk([+Ant][-Ant]) which is a
2-maxfactor of some x ∈ D? No!

Is there any element in
Extk([+Ant][+Ant]) which is not a
2-maxfactor of some x ∈ D? No!

[+Ant][-Ant] is added to G− [+Ant][+Ant] is added to G+

Rutgers Subregular Workshop Learning Positive Grammars with BUFIA Payne (Stony Brook) 36

Applying the Algorithm: Samala Sibilant Harmony

Examples (Samala Sibilant Harmony)

Keep searching!

...

[
+Ant
-Voi

] []
[+Ant][+Ant] [+Ant][-Ant] [-Ant][+Ant] [-Ant][-Ant] [+Voi][+Voi] ...

[+Ant][] [-Ant][] [][+Ant] [][-Ant] [+Voi][] [-Voi][] [][+Voi] [][-Voi]

[][]

...

Negative Grammar Positive Grammar
Is there any element in
Extk([+Ant][-Ant]) which is a
2-maxfactor of some x ∈ D? No!

Is there any element in
Extk([+Ant][+Ant]) which is not a
2-maxfactor of some x ∈ D? No!

[+Ant][-Ant] is added to G− [+Ant][+Ant] is added to G+

Rutgers Subregular Workshop Learning Positive Grammars with BUFIA Payne (Stony Brook) 36

Applying the Algorithm: Samala Sibilant Harmony

Examples (Samala Sibilant Harmony)

Keep searching!

...

[
+Ant
-Voi

] []
[+Ant][+Ant] [+Ant][-Ant] [-Ant][+Ant] [-Ant][-Ant] [+Voi][+Voi] ...

[+Ant][] [-Ant][] [][+Ant] [][-Ant] [+Voi][] [-Voi][] [][+Voi] [][-Voi]

[][]

...

Negative Grammar Positive Grammar
Is there any element in
Extk([+Ant][-Ant]) which is a
2-maxfactor of some x ∈ D? No!

Is there any element in
Extk([+Ant][+Ant]) which is not a
2-maxfactor of some x ∈ D? No!

[+Ant][-Ant] is added to G− [+Ant][+Ant] is added to G+

Rutgers Subregular Workshop Learning Positive Grammars with BUFIA Payne (Stony Brook) 36

Applying the Algorithm: Samala Sibilant Harmony

Examples (Samala Sibilant Harmony)

...

[
+Ant
-Voi

] []
[+Ant][+Ant] [+Ant][-Ant] [-Ant][+Ant] [-Ant][-Ant] [+Voi][+Voi] ...

[+Ant][] [-Ant][] [][+Ant] [][-Ant] [+Voi][] [-Voi][] [][+Voi] [][-Voi]

[][]

...

Negative Grammar
We may later reach [+Ant][-Ant,
+Voi] but we won’t consider it.

[+Ant][-Ant] being banned entails
[+Ant][-Ant, +Voi] being banned

Positive Grammar
We may later reach [+Ant][+Ant,
+Voi] but we won’t consider it.

[+Ant][+Ant] being allowed entails
[+Ant][+Ant, +Voi] being allowed

Rutgers Subregular Workshop Learning Positive Grammars with BUFIA Payne (Stony Brook) 37

Summary & Discussion

• If we fix the size k of subfactors in the grammar, BUFIA can be
adapted to learn positive and negative grammars in a unified way

• Enriched representations of feature-based string models allow us to
provably find the most general subfactors

• Implications of grammar polarity:
• As G+ grows, L(G+) grows
• As G− grows, L(G−) shrinks
• Initially, G+ allows nothing, while G− allows everything

Rutgers Subregular Workshop Learning Positive Grammars with BUFIA Payne (Stony Brook) 38

Summary & Discussion

• If we fix the size k of subfactors in the grammar, BUFIA can be
adapted to learn positive and negative grammars in a unified way

• Enriched representations of feature-based string models allow us to
provably find the most general subfactors

• Implications of grammar polarity:
• As G+ grows, L(G+) grows
• As G− grows, L(G−) shrinks
• Initially, G+ allows nothing, while G− allows everything

Rutgers Subregular Workshop Learning Positive Grammars with BUFIA Payne (Stony Brook) 38

Summary & Discussion

• If we fix the size k of subfactors in the grammar, BUFIA can be
adapted to learn positive and negative grammars in a unified way

• Enriched representations of feature-based string models allow us to
provably find the most general subfactors

• Implications of grammar polarity:

• As G+ grows, L(G+) grows
• As G− grows, L(G−) shrinks
• Initially, G+ allows nothing, while G− allows everything

Rutgers Subregular Workshop Learning Positive Grammars with BUFIA Payne (Stony Brook) 38

Summary & Discussion

• If we fix the size k of subfactors in the grammar, BUFIA can be
adapted to learn positive and negative grammars in a unified way

• Enriched representations of feature-based string models allow us to
provably find the most general subfactors

• Implications of grammar polarity:
• As G+ grows, L(G+) grows

• As G− grows, L(G−) shrinks
• Initially, G+ allows nothing, while G− allows everything

Rutgers Subregular Workshop Learning Positive Grammars with BUFIA Payne (Stony Brook) 38

Summary & Discussion

• If we fix the size k of subfactors in the grammar, BUFIA can be
adapted to learn positive and negative grammars in a unified way

• Enriched representations of feature-based string models allow us to
provably find the most general subfactors

• Implications of grammar polarity:
• As G+ grows, L(G+) grows
• As G− grows, L(G−) shrinks

• Initially, G+ allows nothing, while G− allows everything

Rutgers Subregular Workshop Learning Positive Grammars with BUFIA Payne (Stony Brook) 38

Summary & Discussion

• If we fix the size k of subfactors in the grammar, BUFIA can be
adapted to learn positive and negative grammars in a unified way

• Enriched representations of feature-based string models allow us to
provably find the most general subfactors

• Implications of grammar polarity:
• As G+ grows, L(G+) grows
• As G− grows, L(G−) shrinks
• Initially, G+ allows nothing, while G− allows everything

Rutgers Subregular Workshop Learning Positive Grammars with BUFIA Payne (Stony Brook) 38

Future Work

• Implementing the generalized algorithm and applying it to corpus
data

• Approaches to dealing with noise and sparsity in the data

• Learning mixed grammars containing both banned and allowed
subfactors

• Comparison of learning trajectories of positive & negative
grammars

• Within a single search of the hypothesis space
• When applied to incrementally larger data sets as a proxy for

incremental learning

Rutgers Subregular Workshop Learning Positive Grammars with BUFIA Payne (Stony Brook) 39

Future Work

• Implementing the generalized algorithm and applying it to corpus
data

• Approaches to dealing with noise and sparsity in the data

• Learning mixed grammars containing both banned and allowed
subfactors

• Comparison of learning trajectories of positive & negative
grammars

• Within a single search of the hypothesis space
• When applied to incrementally larger data sets as a proxy for

incremental learning

Rutgers Subregular Workshop Learning Positive Grammars with BUFIA Payne (Stony Brook) 39

Future Work

• Implementing the generalized algorithm and applying it to corpus
data

• Approaches to dealing with noise and sparsity in the data

• Learning mixed grammars containing both banned and allowed
subfactors

• Comparison of learning trajectories of positive & negative
grammars

• Within a single search of the hypothesis space
• When applied to incrementally larger data sets as a proxy for

incremental learning

Rutgers Subregular Workshop Learning Positive Grammars with BUFIA Payne (Stony Brook) 39

Future Work

• Implementing the generalized algorithm and applying it to corpus
data

• Approaches to dealing with noise and sparsity in the data

• Learning mixed grammars containing both banned and allowed
subfactors

• Comparison of learning trajectories of positive & negative
grammars

• Within a single search of the hypothesis space
• When applied to incrementally larger data sets as a proxy for

incremental learning

Rutgers Subregular Workshop Learning Positive Grammars with BUFIA Payne (Stony Brook) 39

Future Work

• Implementing the generalized algorithm and applying it to corpus
data

• Approaches to dealing with noise and sparsity in the data

• Learning mixed grammars containing both banned and allowed
subfactors

• Comparison of learning trajectories of positive & negative
grammars

• Within a single search of the hypothesis space

• When applied to incrementally larger data sets as a proxy for
incremental learning

Rutgers Subregular Workshop Learning Positive Grammars with BUFIA Payne (Stony Brook) 39

Future Work

• Implementing the generalized algorithm and applying it to corpus
data

• Approaches to dealing with noise and sparsity in the data

• Learning mixed grammars containing both banned and allowed
subfactors

• Comparison of learning trajectories of positive & negative
grammars

• Within a single search of the hypothesis space
• When applied to incrementally larger data sets as a proxy for

incremental learning

Rutgers Subregular Workshop Learning Positive Grammars with BUFIA Payne (Stony Brook) 39

Thank you!

I am grateful to Jeff Heinz, Thomas Graf, Jon Rawski, Logan Swanson,
and the SCiL reviewers for discussion.

This work was supported by the Institute for Advanced Computational
Science Graduate Research Fellowship and the National Science
Foundation Graduate Research Fellowship Program.

Rutgers Subregular Workshop Learning Positive Grammars with BUFIA Payne (Stony Brook) 40

References I

Caleb Belth. 2023. Towards an Algorithmic Account of Phonological Rules and
Representations. Ph.D. thesis, University of Michigan.

Caleb Belth, Sarah Payne, Deniz Beser, Jordan Kodner, and Charles Yang. 2021. The
greedy and recursive search for morphological productivity. Proceedings of the 43rd
annual meeting of the Cognitive Science Society, 43:2869–2875.

J Richard Büchi. 1960. Weak second-order arithmetic and finite automata.
Mathematical Logic Quarterly, 6(1-6).

Jane Chandlee, Remi Eyraud, Jeffrey Heinz, Adam Jardine, and Jonathan Rawski. 2019.
Learning with partially ordered representations. In Proceedings of the 16th Meeting
on the Mathematics of Language, pages 91–101, Toronto, Canada. Association for
Computational Linguistics.

Gunnar Ólafur Hansson. 2010. Consonant harmony: Long-distance interactions in
phonology, volume 145. University of California Press.

Jeffrey Heinz. 2010a. Learning long-distance phonotactics. Linguistic Inquiry,
41(4):623–661.

Jeffrey Heinz. 2010b. String extension learning. In Proceedings of the 48th Annual
Meeting of the Association for Computational Linguistics, pages 897–906, Uppsala,
Sweden. Association for Computational Linguistics.

Rutgers Subregular Workshop Learning Positive Grammars with BUFIA Payne (Stony Brook) 41

https://doi.org/10.18653/v1/W19-5708
https://aclanthology.org/P10-1092

References II

Jeffrey Heinz, Anna Kasprzik, and Timo Kötzing. 2012. Learning in the limit with
lattice-structured hypothesis spaces. Theoretical Computer Science, 457:111–127.

Daoxin Li and Kathryn D Schuler. 2023. Acquiring recursive structures through
distributional learning. Language Acquisition, pages 1–14.

Gary F Marcus, Steven Pinker, Michael Ullman, Michelle Hollander, T John Rosen, Fei
Xu, and Harald Clahsen. 1992. Overregularization in language acquisition.
Monographs of the society for research in child development, pages i–178.

Robert McNaughton and Seymour A Papert. 1971. Counter-Free Automata (MIT
research monograph no. 65). The MIT Press.

Sarah Payne. 2023. Marginal sequences are licit but unproductive. Poster presented at
the 2023 Annual Meeting of Phonology.

James Rogers and Jeffrey Heinz. 2014. Model theoretic phonology. In Workshop slides
in the 26th European Summer School in Logic, Language and Information.

James Rogers, Jeffrey Heinz, Margaret Fero, Jeremy Hurst, Dakotah Lambert, and Sean
Wibel. 2013. Cognitive and sub-regular complexity. In Formal Grammar: 17th and
18th International Conferences, Revised Selected Papers, pages 90–108. Springer.

Rutgers Subregular Workshop Learning Positive Grammars with BUFIA Payne (Stony Brook) 42

https://doi.org/https://doi.org/10.1016/j.tcs.2012.07.017
https://doi.org/https://doi.org/10.1016/j.tcs.2012.07.017

References III

Kristina Strother-Garcia, Jeffrey Heinz, and Hyun Jin Hwangbo. 2016. Using model
theory for grammatical inference: a case study from phonology. In Proceedings of
The 13th International Conference on Grammatical Inference, pages 66–78.

Mai H Vu, Ashkan Zehfroosh, Kristina Strother-Garcia, Michael Sebok, Jeffrey Heinz,
and Herbert G Tanner. 2018. Statistical relational learning with unconventional string
models. Frontiers in Robotics and AI, 5:76.

Charles Yang. 2016. The price of linguistic productivity: How children learn to break the
rules of language. MIT press.

Rutgers Subregular Workshop Learning Positive Grammars with BUFIA Payne (Stony Brook) 43

Some Lemmas

Lemma 1: Maxfactor-Subfactor Containment

Let k be some positive integer and let M be some model of Σ∗. For any
w ∈ Σ∗ and for any F ∈ Sfack(M,w), we have that:

[∃G ∈ Mfack(M,w)](F ⊑ G)

Lemma 2: Union of Subfactors of Maxfactors

Let k be some positive integer and let M be some model of Σ∗. For any
w ∈ Σ∗, we have that:⋃

S∈Mfack (M,w)

Sfack(S) = Sfack(M,w)

Rutgers Subregular Workshop Learning Positive Grammars with BUFIA Payne (Stony Brook) 44

Finite Model Theory

Model Signature: a set of relations R = {R1,R2, ...,Rn}
• Each Ri is an mi -ary relation

R-Structure: a tuple of elements S = ⟨D;R1,R2, ...,Rn⟩
• D, the domain, is a finite set of elements

• Each Ri is a subset of Dmi

Size |S | of an R-structure = cardinality of its domain

Rutgers Subregular Workshop Learning Positive Grammars with BUFIA Payne (Stony Brook) 45

Finite Model Theory

Model Signature: a set of relations R = {R1,R2, ...,Rn}
• Each Ri is an mi -ary relation

R-Structure: a tuple of elements S = ⟨D;R1,R2, ...,Rn⟩
• D, the domain, is a finite set of elements

• Each Ri is a subset of Dmi

Size |S | of an R-structure = cardinality of its domain

Rutgers Subregular Workshop Learning Positive Grammars with BUFIA Payne (Stony Brook) 45

Finite Model Theory

Model Signature: a set of relations R = {R1,R2, ...,Rn}
• Each Ri is an mi -ary relation

R-Structure: a tuple of elements S = ⟨D;R1,R2, ...,Rn⟩
• D, the domain, is a finite set of elements

• Each Ri is a subset of Dmi

Size |S | of an R-structure = cardinality of its domain

Rutgers Subregular Workshop Learning Positive Grammars with BUFIA Payne (Stony Brook) 45

Precedence and Successor Models

Precedence Model: M<(w) := ⟨Dw ;<, [Rw
σ]σ∈Σ⟩

• Dw = {1, ..., |w |} is the domain of positions in w

• <:= {(i , j) ∈ Dw × Dw | i < j} is the general precedence relation

1 2 3 4

+Ant +Ant -Ant -Ant

<

<

<

<

< <

(Büchi, 1960; McNaughton and Papert, 1971; Rogers et al., 2013)

Rutgers Subregular Workshop Learning Positive Grammars with BUFIA Payne (Stony Brook) 46

Precedence and Successor Models

Successor Model: M�(w) := ⟨Dw ;�, [Rw
σ]σ∈Σ⟩

• Dw = {1, ..., |w |} is the domain of positions in w

• � := {(i , i + 1) ∈ Dw × Dw} is the successor relation

1 2 3 4

+Ant +Ant -Ant -Ant

� � �

(Büchi, 1960; McNaughton and Papert, 1971; Rogers et al., 2013)

Rutgers Subregular Workshop Learning Positive Grammars with BUFIA Payne (Stony Brook) 47

Restrictions

Definition: Restriction

An R-structure A is a restriction of an R-structure B if DA ⊆ DB and for
each m-ary relation Ri in the model signature:

RA
i = {(x1, ..., xm) ∈ RB

i | x1, ..., xm ∈ DA} (3)

Intuition: identify a subset DA of the domain of B and retain only those
relations in B whose elements are wholly within DA

R-structure B

1 2 3 4

a b b a
<

<

<

<

< <

R-structure A

1 2 3

a b b
<

<

<

DA = {1, 2, 3} ⊂ DB = {1, 2, 3, 4}

Rutgers Subregular Workshop Learning Positive Grammars with BUFIA Payne (Stony Brook) 48

Subfactor

Definition: Subfactor

An R-structure A is a subfactor of an R-structure B (notated A ⊑ B) if
there exists a restriction B ′ of B and a bijection h such that for all Ri ∈ R,
if Ri (x1, ..., xm) holds in A, then Ri (h(x1), ..., h(xm)) holds in B ′.

Intuition: A is a subfactor of B if there is a mapping between DA and
some subset of DB and all relations that hold in A also hold over the
corresponding elements in B

Rutgers Subregular Workshop Learning Positive Grammars with BUFIA Payne (Stony Brook) 49

Maxfactor

Definition: Maxfactor

An R-structure A is a maxfactor of an R-structure B (notated A ≤ B) iff
A ⊑ B and for each m-ary relation Ri , whenever Ri (x1, ..., xm) holds in B,
Ri (h

−1(x1), ..., h
−1(xm)) holds in A.

Intuition: A is a maxfactor of B if A ⊑ B and and all relations that hold
in B also hold over the corresponding elements in A

Rutgers Subregular Workshop Learning Positive Grammars with BUFIA Payne (Stony Brook) 50

Connectedness

Connectedness

An R-structure S = ⟨D;R1,R2, ...,Rn⟩ is connected iff
(∀x , y ∈ D)[(x , y) ∈ C ∗], where C ∗ is defined as the symmetric transitive
closure of:

C ={(x , y) ∈ D × D |
∃i ∈ {1...n}, ∃(x1...xm) ∈ Ri

∃s, t ∈ {1...m}, x = xs , y = xt}

Intuition: domain elements x and y of S belong to C if they belong to
some non-unary relation Ri in S

Examples (Disconnected R-Structure)

1 2 3 4

a b b a
� �

Rutgers Subregular Workshop Learning Positive Grammars with BUFIA Payne (Stony Brook) 51

Chandlee et al. (2019) Algorithm

S
• Bottom-up traversal

• For a given subfactor S , check whether
S ⊑ x for any x in the data D

• If not, posit a constraint: S ∈ G−

• If so, cannot posit a constraint
Add the least superfactors of S to
the queue to be considered next

Rutgers Subregular Workshop Learning Positive Grammars with BUFIA Payne (Stony Brook) 52

Chandlee et al. (2019) Algorithm

S
• Bottom-up traversal
• For a given subfactor S , check whether

S ⊑ x for any x in the data D

• If not, posit a constraint: S ∈ G−

• If so, cannot posit a constraint
Add the least superfactors of S to
the queue to be considered next

Rutgers Subregular Workshop Learning Positive Grammars with BUFIA Payne (Stony Brook) 52

Chandlee et al. (2019) Algorithm

S
• Bottom-up traversal
• For a given subfactor S , check whether

S ⊑ x for any x in the data D
• If not, posit a constraint: S ∈ G−

• If so, cannot posit a constraint
Add the least superfactors of S to
the queue to be considered next

Rutgers Subregular Workshop Learning Positive Grammars with BUFIA Payne (Stony Brook) 52

Chandlee et al. (2019) Algorithm

S
• Bottom-up traversal
• For a given subfactor S , check whether

S ⊑ x for any x in the data D
• If not, posit a constraint: S ∈ G−

• If so, cannot posit a constraint
Add the least superfactors of S to
the queue to be considered next

Rutgers Subregular Workshop Learning Positive Grammars with BUFIA Payne (Stony Brook) 52

Conventional vs. Unconventional String Models

Conventional String Models
• Mutually-exclusive unary
relations label each domain
element with the single property
of being some σ ∈ Σ

• Segments in phonological
applications

1 2

s S

<

Unconventional String Models
• Non-exclusive unary relations
allow distinct alphabetic
symbols to share properties

• Features in phonological
applications

1 2

+Str
+Ant
-Voi

+Str
-Ant
-Voi

<

(Strother-Garcia et al., 2016; Vu et al., 2018)

Rutgers Subregular Workshop Learning Positive Grammars with BUFIA Payne (Stony Brook) 53

	Subfactors and Maxfactors
	Grammars and Their Languages
	The Learning Algorithm
	Example: Samala Sibilant Harmony
	Extra Slides
	References

