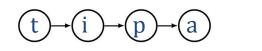
The Bottom-Up Factor Inference Algorithm

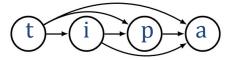
Logan Swanson

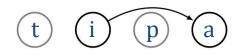
Outline

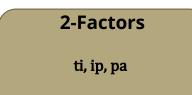
- 1. Representations and substructures for phonotactic learning
- 2. Structure of the constraint space
- 3. BUFIA: a phonotactic learning algorithm
- 4. Constraint selection strategies and their impact on learning

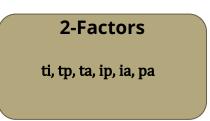
Phonotactic Grammars

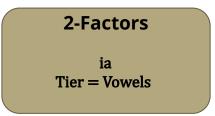

Segmental	Feature-Based	Autosegmental	
✓ papi ✓ tipa	✓ papi ✓ tipa	LHLH ΙΙΙΙ σσσσ	
× taap × ptap	× taap × ptap	× LΗ L Η \//\ Ι σσσσ	
Grammar *aa, *ai, *ii, *ia, *pp, *pt, *tp, *tt	Grammar *[+cons][-cons], *[-cons][+cons]	Grammar *LH *L \/ /\ σ, σσ	

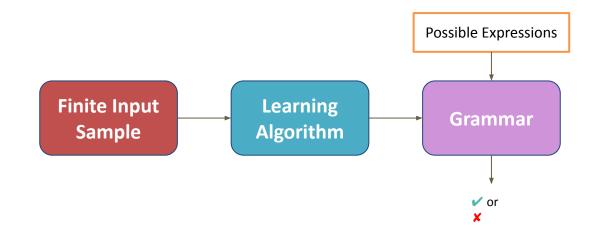

Phonotactic Grammars


Successor


Precedence

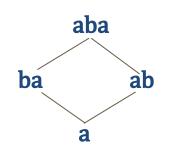

Tier-Successor

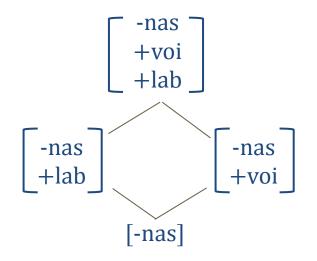




The Learning Problem

- Learning is about figuring out which substructures, or **factors**, belong in the grammar
- A learning algorithm is a function from input sample to grammar

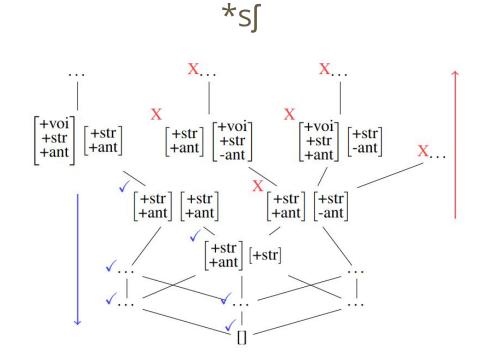

- 1. Structure of the constraint space
- 2. BUFIA: a phonotactic learning algorithm
- 3. Constraint selection strategies and their impact on learning
- 4. Case Study: Bolivian Quechua


Phonotactic Grammars

- We can represent grammars as collections of substructures, or, **factors** which can together be used to determine whether a given form is licit or not
- Grammars can be **positive** or **negative**, and they can leverage many different kinds of substructures

Factor Entailments

• Some factors contain others:



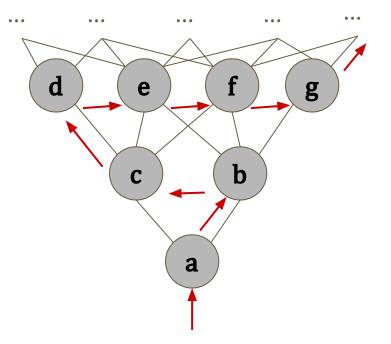
Factor Entailments

- If **S** is a subfactor of **T**, and **G** generates **T**, then **G** generates **S**
- If T is a superfactor of S, and G does *not* generate S, then G does not generate T

Factor Entailments

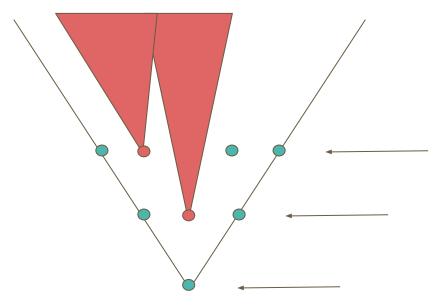
(Chandlee et al. 2019)

Leveraging Structure for Learning


- These are large search spaces, but we have seen that they have a lot of internal structure
- How do we effectively leverage this structure for learning?
- The Bottom-Up Factor Inference Algorithm (Chandlee et al. 2019) does exactly this

Outline

- 1. Structure of the constraint space
- 2. BUFIA: a phonotactic learning algorithm
- 3. Constraint selection strategies and their impact on learning
- 4. Case Study: Bolivian Quechua


Bottom-Up Factor Inference Algorithm (BUFIA)

- Batch learner: all input data is provided upfront
- Start from the **bottom** of the partial order, and proceed upwards in a **breadth-first** manner
- Use the factor ordering relation to prune the hypothesis space along the way
 - This pruning crucially leverages the internal structure of the search space and sparsity in the input data to vastly reduce the area to be searched

BUFIA

- Start from the bottom of the partial order, and proceed upwards breadth-first
- For each factor:
 - If it is present in the data, continue
 - If it is not present in the data, add it as a constraint and prune all its superfactors out of the search space
- Stop when a cutoff condition is reached:
 - Typically this will be an upper bound on the size of the factors


```
Data: positive sample D, empty structure s_0,
max constraint size k
Result: G, a set of constraints
Q \leftarrow \{s_0\};
G \leftarrow \emptyset;
V \leftarrow \emptyset:
while Q \neq \emptyset do
      s \leftarrow Q.dequeue();
     V \leftarrow V \cup \{s\};
     if \exists x \in D such that s \sqsubseteq x then
      S \leftarrow \texttt{NextSupFact}(s); \\ S' \leftarrow \{s \in S \mid |s| \le k \land (\neg \exists g \in G) [g \sqsubseteq s] \land s \notin \}
             V;
           Q.enqueue(S');
       end
       else
        | \quad G \leftarrow G \cup \{s\};
       end
end
return G;
```

Properties of BUFIA

Given a finite positive data sample **D**, BUFIA will find a grammar **G** of constraints for which the following are true:

- 1. **G** is consistent with the data
- 2. L(G) is the smallest language in the relevant class which contains D
- 3. **G** includes the most general factors of any other grammars **G**' which satisfy both 1 and 2
 - > No factor in any **G'** is more general than every factor in **G**

Parupa is an artificial language created by Mayer (2020) consisting of a simple alphabet of 5 vowels (a, e, i, o, u) and 7 consonants (p, t, k, b, d, g, r) which follows some simple constraints:

Local Constraints:

- All syllables are CV
- Words must begin with /p/ or /b/
- /p t k/ must be followed by a high vowel or /a/
- /b d g/ must be followed by a mid vowel or /a/

Long-Distance Constraints:

- Words must contain only front or back vowels
- /a/ is transparent to harmony and may occur in either case

Outline

- 1. Structure of the constraint space
- 2. BUFIA: a phonotactic learning algorithm
- 3. Constraint selection strategies and their impact on learning
- 4. Case Study: Bolivian Quechua

Constraint Selection

- It is possible for many different sets of constraints to accomplish the same thing
- For example, if the sequence "*nt*" is absent from the data, there are many possible constraints that could account for this:

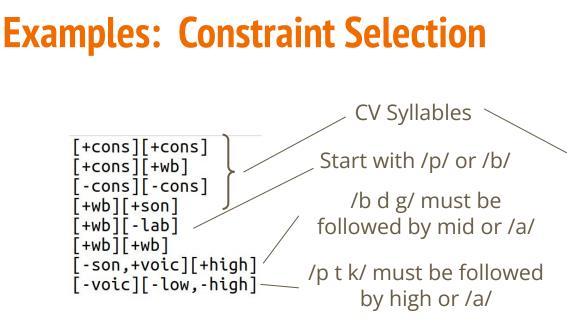
*[+nas][+cor]
*[+sonorant][-sonorant]
*[+consonant][-nas, -voi]

. . .

• How should the learner decide which constraints to select, when multiple hypotheses are empirically equivalent?

Abductive Principles

- Abduction refers to finding the *simplest* or *best* conclusion from a set of observations
- Abductive principles tell us which constraints to select, when multiple options may yield a result that is consistent with our data
- By virtue of proceeding bottom-up, BUFIA already employs one abductive principle-namely, that general constraints are better than specific ones
- However, without additional abductive principles in place, BUFIA will yield redundant grammars

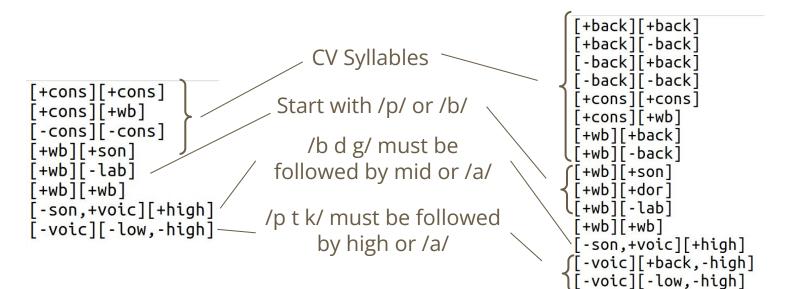

Abductive Principles

• Search Path:

- Feature ordering
- What is considered a "layer"

• Constraint Selection:

- Adds additional banned items
- Adds exclusively novel banned items
- Adds amount of novel banned items over some threshold
- Each of these choices has repercussions for learning behavior



Parupa, only adding constraints which increase the number of banned ngrams [+cons][+cons] [+cons][-son] [+cons][-lab] [+cons][-dor] [+cons][-voic] +cons][+lab] [+cons][+dor] [+cons][+wb] [-son][+cons] [-son][-son] -son][-lab] -son][-dor] -son][-voic] [-son][+lab] [-son][+dor]

121 total constraints

Parupa, adding all constraints

Examples: Feature Ordering

Parupa, features ordered by extension size

Parupa, features ordered by input feature matrix

Examples: Stopping Condition

[+cons][+cons] [+cons][+wb] [-cons][-cons] [+wb][+son] [+wb][-lab] [+wb][+wb] [-son,+voic][+high] [-voic][-low,-high]

Parupa: max distance = 5

```
[+cons][+cons]
[+cons][+wb]
[-cons][-cons]
[+wb][+son]
[+wb][-lab]
[+wb][+wb]
[][+wb][]
[-son,+voic][+high]
[-voic][-low,-high]
[-back,-low][][+back]
[+back][][-back,-low]
[+son][+back,-high][+voic,+lab]
```

[+cons][+cons] [+cons][+wb] -cons][-cons] [+wb][+son] [+wb][-lab] [+wb][+wb] [][+wb][] -son,+voic][+high] [-voic][-low,-high] -back,-low][][+back] [+back][][-back,-low] +voic][+high][+son][+low] [+son][+back,-high][+voic,+lab] [+son][-back][+dor][+back] [+dor][+high][+voic][+high] [+high][+son][+low][+son] [+back][+voic][+high][+son] Parupa: max distance = 8

Parupa: max factor width = 3, max number of features = 3

Examples: Constraint Selection

Parupa: distance = 8

[+cons][+cons] [+cons][+wb] [-cons][-cons] [+wb][+son] [+wb][-lab] [+wb][+wb] [][+wb][] [][+wb][] [-son,+voic][+high] [-voic][-low,-high] [-back,-low][][+back] [+back][][-back,-low]

New constraints must increase the number of banned ngrams by **10** [+cons][+cons] [+cons][+wb] -cons][-cons] +wb][+son] +wb][-lab] [+wb][+wb] [][+wb][] -son,+voic][+high] -voic][-low,-high] -back,-low][][+back] +back][][-back,-low] +voic][+high][+son][+low] +son][+back,-high][+voic,+lab] +son][-back][+dor][+back] +dor][+high][+voic][+high] [+high][+son][+low][+son] [+back][+voic][+high][+son] New constraints must increase the number of banned ngrams by 1

- 1. Structure of the constraint space
- 2. BUFIA: a phonotactic learning algorithm
- 3. Constraint selection strategies and their impact on learning
- 4. Case Study: Bolivian Quechua

Quechua Phonotactics

- /i u/ lower to [e o]:
 - Immediately **following** or **preceding** a uvular (/q q^h q'/)
 - Preceding a uvular across an intervening coda

(1) Uvular contexts: [e o] *[i u] a. q'epij (*q'ipij) q'oni (*q'uni) 'hot' 'to carry' 'T' b. peqaj (*piqaj) 'to grind' noqa (*nuqa) c. wesq'aj (*wisq'aj) 'to close' toága (*tuága) 'son-in-law' (2) Elsewhere: [i u] *[e o] ku/ku (*ko/ko) 'type of bird' misi (*mese) 'cat'

Quechua Phonotactics

Table 1

Quechua tiers and phonotactic generalizations

Tier	Projected segments	Phonotactic generalizations
Dorsal	Dorsal consonants, vowels	High-mid vowel allophony
C-dorsal ^a	Dorsal consonants, +	*KQ, *QK (within morphemes)
Laryngeal Segmental	Stops, affricates, h, ? All, +	Laryngeal cooccurrence restrictions *VV, *CCC, *wu, *wo

^a The C-dorsal tier contains a morpheme boundary symbol (+), allowing the model to represent the fact that the restriction on uvular and velar consonant cooccurrence holds within morphemes but not across them.

Accidental Gaps in Quechua (W & G)

- 2,966 legal trigrams, only 1,472 attested (49%)
- 32,971 illegal trigrams
- How should a learner distinguish principled gaps from accidental ones?
 - [eq^ho] vs [k^hek]
- Wilson & Gallagher argue that two things are needed to do this:
 - Feature-based representations
 - Statistical methods

	Statistics	No Statistics
Segments	MaxEnt-Seg	(T)SL
Features	MaxEnt-Ftr	???

"What about a nonstatistical model that learns by memorizing feature sequences? ..."

	Statistics	No Statistics
Segments	MaxEnt-Seg	(T)SL
Features	MaxEnt-Ftr	???

"Lacking a method for deciding **which** representations are relevant for assessing well-formedness – precisely the role played by statistics in Maxent-Ftr – **learning... is doomed**."

- Wilson and Gallagher 2018

Experimental Setup

We followed the experimental setup used by W&G to add BUFIA to this paradigm:

- Training data: ~1,000 dictionary forms + 3 suffixes (with vowel lowering applied)
- Testing data: all possible CV(C)CV(C) sequences, sorted into
 - 150,000 "licit" forms
 - 400,000 "illicit" forms
 - Sorted according to the known phonotactic generalizations they describe

Experimental Setup

- Training data divided into 5 folds, with 20% of the dictionary forms held out in each group
- Testing data:
 - The held-out dictionary forms
 - The 150,000 synthetic licit forms
 - The 400,000 synthetic illicit forms
- We further divided this testing data into a tuning and eval set (random 50% of each category), and tuned our abductive parameters to optimize f1 over the tuning data
 - W&G also had parameter tuning, although it's not clear they had separate tuning and eval sets

Experiment 1 Results

	held-out forms (W&G)	legal nonce roots	illegal nonce roots
Features, Stats (MaxEnt-Ftr)	99.8%	82.2%	1.9%
Segments, Stats (MaxEnt-Seg)	99.7%	71.5%	45.4%
Segments, No-stats $((T)SL)$	96.7%	18.8%	0.1%
Features, No-stats (BUFIA)	99.6%	94.1%	1.8%

Table 1: Experiment 1 Test Results: Percentage of forms accepted by evaluation category aggregated over the five folds. Results reported in rows 1-3 are from W&G.

Alternate Training Setup

- Possible issues with W&G experimental setup:
 - Roots are duplicated 4x in training set but not controlled for in fold construction, so many roots will be present in both train and test sets
 - Uneven distribution of how many illicit forms violate each known constraint
 - In fact, a single tier can rule out 89% of illicit forms
 - Synthetic "licit" data is unverified by native speakers the baked in assumption here is that the constraints identified by W&G are the only ones active in the grammar

Alternate Training Setup

- New 5-fold split of dataset with no roots duplicated across train and test sets
- New set of illicit data, consisting of 40 forms which uniquely violate each known constraint
- No synthetic "licit" data

Experiment 2 Results

	precision	recall	f1
MaxEnt-Ftr	0.786	0.951	0.861
BUFIA	0.946	0.943	0.945

Table 2: Experiment 2 Test Results: Scores are aggregated over the five folds.

Takeaways

- The substructures relevant for phonotactic learning form a **structured search space**, and this structure can be leveraged for learning
- **BUFIA** is a deterministic, non-statistical batch learner which leverages this structure to learn surface-true constraints over positive data
- BUFIA is competitive on phonotactic learning tasks with natural language data
- Choices about **abductive principles** are highly relevant to learning behavior
- BUFIA can be thought of as a **general-form phonotactic learner**, which can operate with different representations and abductive principles and lend insight into how these impact learning

Malarky: a=100

Malarky: a=1

[+lateral][+lateral][+low]

Layers by k vs d

Parupa, layered by distance, d=5 [+cons][+cons] [-cons][-cons] [-voic][-low,-high] [+voic,-son][+high] [+son][-high,+back][+voic,+lab]] [+back][][-low,-back] [-low,-back][][+back]

Parupa, layered by factor width (k), k=3

Non-intersecting extension condition

Parupa, new constraints must add **some** new ngram

[+cons][+cons] [-cons][-cons] [-cons][-voic][-low,-high] [-cons][+voic,-son][+high] [-voic][-low,-high][+cons] [+back][-voic][-back,+high] [+back][+cons,+son][-low,-back] [+voic,-son][+high][+cons] [+cons,+son][-high,+back][+voic,+lab] [-low,-back][-voic][+back,+high] [-low,-back][+voic,+cons][-high,+back] [-low,-back][+cons,+son][+back,+high]

Parupa, new constraints must add **exclusively** new ngrams

What about MaxEnt?

- The grammar produced by MaxEnt is *gradient* rather than *categorical*, but fundamentally the MaxEnt learner is traversing the same kind of structured constraint space, just with different abductive principles about ordering and constraint selection
- Ratio of Observed:Expected occurrences of forms is used to choose which constraint to add next, and at every step constraints are re-weighted to maximize the likelihood of the observed data
- Although not explicitly discussed that way, rules about factor entailments are still highly relevant: if a factor is added to the grammar, the expected occurrences of all its superfactors will be lowered commensurately with the weight assigned to that constraint

MaxEnt

IdXENU	Constraint	Weight	Comment
	1. $*[+son, +dors]$	5.64	*[ŋ]
[+sonorant,+dorsal]	2. $*[+cont, +voice, -ant]$	3.28	*[3]
[+sonorant][] [][+continuant]	3. * $\begin{bmatrix} & -voice \\ +ant \\ +strid \end{bmatrix}$ [-approx]	5.91	Nasals and obstruents may only be preceded (within the onset) by [s].
[][+voice]	.4. *[][+cont]	5.17	Fricatives may not cluster with preceding C.
[][+strident] [][-back]	5. *[][+voice]	5.37	Voiced obstruents may not cluster with preceding C.
	6. *[+son][]	6.66	Sonorants may only be onset-final.
[-continuant,+strident][]	-7. *[-strid][+cons]	4.40	Nonstrident coronals may not precede nonglides.
	8. *[][+strid]	1.31	Stridents must be initial in a cluster.
[+continuant,+voice,-anterior] [+continuant,+voice][]	9. *[+lab] $\begin{bmatrix} \wedge + approx \\ + cor \end{bmatrix}$	4.96	The only consonants that may follow labials are [1] and [r].
	10. *[-ant] $\begin{bmatrix} \wedge + approx \\ -ant \end{bmatrix}$	4.84	Only [r] may follow nonanterior coronals.
[-strident][+consonantal]	11. *[+cont, +voice][]	4.84	Voiced fricatives must be final in an onset.
[-anterior][-approximant] / [+labial][-approximant]	12. *[-cont,-ant][]	3.17	$[\widehat{tJ}]$ and $[\widehat{d3}]$ must be final in an onset.
	13. *[][—back]	5.04	[j] may not cluster with a preceding C; see above for assumed syllabic parsing of [ju].

MaxEnt

[+sonorant,+dorsal]		*[+son, + dors] *[+cont, + voice, - ant
[+sonorant][]	3	$* \begin{bmatrix} ^{\wedge} - \text{voice} \\ + \text{ant} \\ + \text{strid} \end{bmatrix} [- \text{appro}$
[][+continuant]	5.	+ strid $-$ approx
[][+voice]		*[][+cont]
[][+strident]	5.	*[][+voice]
[][-back]	6	*[+son][]
[-continuant,+strident][]		*[-strid][+cons]
[-continuant][-approximant]	8.	*[][+strid]
[+continuant,+voice,-anterior]	9.	*[+lab] $\begin{bmatrix} \wedge + approx \\ + cor \end{bmatrix}$
[+continuant,+voice][]		L
		* $[-ant]$ $\begin{bmatrix} + approx \\ - ant \end{bmatrix}$
[-strident][+consonantal]	11.	*[+cont,+voice][]
[-anterior][-approximant]	12.	*[-cont,-ant][]
[+labial][-approximant]		
[+labial][+labial]	13.	*[][-back]
[+spread][-approximant]		
[][+coronal][+labial]		

	Weight	Comment
rs	5.64	*[ŋ]
pice, - ant]	3.28	*[3]
	5.01	
[-approx]	5.91	Nasals and obstruents may only be preceded (within the onset) by [s].
	5.17	Fricatives may not cluster with preceding C.
	5.37	Voiced obstruents may not cluster with preceding C.
	6.66	Sonorants may only be onset-final.
cons]	4.40	Nonstrident coronals may not precede nonglides.
	1.31	Stridents must be initial in a cluster.
approx cor	4.96	The only consonants that may follow labials are [1] and [r].
approx ant	4.84	Only [r] may follow nonanterior coronals.
pice][]	4.84	Voiced fricatives must be final in an onset.
nt][]	3.17	$[\widehat{t}]$ and $[\widehat{d_3}]$ must be final in an onset.
	5.04	 [j] may not cluster with a preceding C; see above for assumed syllabic parsing of [ju].

Constraint

MaxEnt

[+sonorant,+dorsal] [+sonorant][] [][+continuant] [][+voice] [][+strident] [][-back] [-continuant,+strident][] [-continuant][-approximant] [+continuant,+voice,-anterior] [+continuant,+voice][] [-strident][-approximant] [-strident][+consonantal] [-anterior][-approximant] [+labial][-approximant] [+labial][+labial] [+spread][-approximant] [][+coronal][+labial]

14. *[+ant,+strid][-ant]
15. *[+spread][$^+$ +back]
16. $*[+cont, +voice, +cor]$
17. *[+voice] $\begin{bmatrix} \wedge + \text{approx} \\ + \text{cor} \end{bmatrix}$
18. $* \begin{bmatrix} + \operatorname{cont} \\ -\operatorname{strid} \end{bmatrix} \begin{bmatrix} \wedge + \operatorname{approx} \\ -\operatorname{ant} \end{bmatrix}$
19. *[] $\begin{bmatrix} ^- \operatorname{cont} \\ -\operatorname{voice} \\ +\operatorname{lab} \end{bmatrix}$ [+ cons]
20. *[][+cor] $\begin{bmatrix} \wedge + approx \\ -ant \end{bmatrix}$
21. *[+cont, - strid]
22. *[+strid][-ant]
23. * $\begin{bmatrix} -\operatorname{cont} \\ -\operatorname{voice} \\ +\operatorname{cor} \end{bmatrix} \begin{bmatrix} \wedge +\operatorname{approx} \\ -\operatorname{ant} \end{bmatrix}$

2.80

4.82

2.69

2.97

2.06

3.05

2.06

1.84

2.10

1.70

Sibilants must agree in anteriority
with a following [-anterior]
consonant.
[h] may only cluster with [w] (dialect
assumed has [hw] as legal).
Disprefer voiced coronal fricatives
(violable).
Voiced obstruents may only be
followed by [l, r] (violable).
$[\theta, \delta]$ may only be followed by $[r]$
(violable).
In effect: only [p], and not [k], may occur / sl (violable).
In effect: only [r] may occur after [st].
$[\theta, \delta]$ are rare (violable).
In effect: $[\int r]$ is rare (violable).
In effect: [t] can only be followed by
[r] (violable).

MaxEnt: English Onset Features

	p	t	t∫	k	b	d	dʒ	g	f	θ	S	ſ	h	V	ð	Z	3	m	n	ŋ	1	r	j	W
cons	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	_	_	_
approx	_	-	_	_	_	_	_		_	_	_	_	_	-	_	-	_	_	_	_	+	+	+	+
son	_	_			_		_	_		_		_		_	_		_	+	+	+	+	+	+	+
cont	—	—	_	-	-	_	_		+	+	+	+	+	+	+	+	+							
nas																		+	+	+				
voice	_	—	_	_	+	+	+	+			—	—	_	+	+	+	+							
spread													+											
lab	+				+				+					+				+						+
cor		+	+			+	+			+	+	+			+	+	+		+		+	+		
ant		+				+	_			+	+	_			+	+	_		+		+	_		
strid		_	+			_	+			—	+	+			_	+	+				_	—		
lat																					+			
dors				+				+												+				
high																							+	+
back																							_	+

References

- Jane Chandlee, Rémi Eyraud, Jeffrey Heinz, Adam Jardine, and Jonathan Rawski. 2019. "Learning with Partially Ordered Representations". In *Proceedings of the 16th Meeting on the Mathematics of Language*, pages 91--101. Association for Computational Linguistics.
- Connor Mayer. An algorithm for learning phonological classes from distributional similarity. Phonology 37 (2020) 91-131. doi:10.1017/S0952675720000056
- Hayes, Bruce, and Colin Wilson. 2008. A maximum entropy model of phonotactics and phonotactic learning. Linguistic Inquiry 39:379–440.